基于Flyboost模块的新型单级功率因数校正变换器
,储存能量;当S1关断时,由于|Vin(t)|(Vc1-nVc),D6不能导通,储存在T1中的能量全部传递到输出端。 图2工作于DCM模式的反激变压器 图3带Flyboost模块的单级PFC变换器 图4Flyboost模块两种工作状态示意图 (a)两种工作状态 (b)反激变压器状态(c)Boost电感状态 在这种状态时,经过整流桥后的输入电iin流是一个直角三角波,如图4所示。平均输入电流可表示为 式中:L1为T1初级绕组的电感值。 2)Boost电感状态当|Vin(t)|>(Vc1-nVo)时,T1相当于一个Boost电感。在一个开关周期内,当S1开通时,L1经D5充电储能;当S1关断时,由于|Vin(t)|>(Vc1-nVo),D6导通,储存在L1上的能量向C1放电,其工作方式与一般的Boost电感型单级PFC变换器一样。 在这种状态时,平均输入电流可表示为 由式(11)(12)可知,无论Flyboost模块处于反激变压器状态或者Boost电感状态,变换器都能实现功率因数校正。 另外,这种新型的单级PFC变换器还具有一般单级PFC变换器所没有的优点: 1)高效率因为当Flyboost模块工作在反激变压器状态时,相当于一个无损电阻,所以会获得比一般单级PFC变换器高的效率; 2)自动限制中间储能电容C1上的电压因为,当Flyboost模块处于反激变压器状态时,反激变压器副边反馈到原边的电压加上输入电压之和为(|Vin(t)|+Vo·n),只有当它大于Vc1时,C1才会被充电,此时Flyboost模块进入Boost电感状态,所以,C1的电压最终被箝位在(Vin(peak)+Vo·n); 3)输出电流纹波很小如前所述,普通的反激变压器PFC模块得到的输出电流含有很大的二倍工频纹波,但是,在这种新型变换器中,变换器的输出由Flyboost模块和DC/DC级的正激变换器共同调节,可以获得稳定的低纹波输出。 5实验结果 根据图3建立了单级PFC变换器实验电路,设计参数为:AC输入170~230V;DC输出16V/7.5A;开关频率120kHz;L1=54.02μH;n=4.75。 当Flyboost模块处于反激变换器状态时,可以实现功率的直接变换,所以变换器具有较高的效率,实验证明,变换器满载时效率达到了82.06%。 在实验中,将Flyboost模块的两种状态都设计在DCM模式下,从而可以获得很高的功率因数,输入电压与输入电流的波形如图5(b)所示,在满载时功率因数为0.976。 图5(c)中第2条波形为变换器总的输出电流,第3和第4条波形分别为Flyboost模块与DC/DC变换器的输出电流。输出由Flyboost模块和DC/DC级的正激变换器共同调节,所以输出电流的工频纹波很小。 6结语 本文提出了一种新型单级功率因数校正变换器。这种变换器有以下优点: (a)Flyboost模块两种状态的电流 (b)输入电压与输入电流 (c)输入电压与输出电流 图5单级PFC变换器的实验波形 1)实现部分能量的直接变换,从而获得较高的效率; 2)实现了中间储能电容上电压的自动箝位; 3)通过控制Flyboost模块的两种状态都工作在DCM模式下,获得了很高的功率因数。 实验证明了这是一种很好的单级PFC变换器。 



Iin(avg)=·D2·Ts(11)
Iin(avg)=(12)
Flyboost模块两种工作状态的电流波形如图5(a)所示。在两种状态的转换中,由于副边电压的反馈作用,C1的电压自动箝位在Vin(peak)+Vo·n。实验证明,当输入为AC220V时,C1的电压箝位在387V(220×+16×4.75=387)。


- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)
