基于卡尔曼滤波的电力系统短期负荷预测
时间:02-22
来源:互联网
点击:




图1是该天24小时的卡尔曼滤波预测值与实际值的比较,图2是24点的卡尔曼滤波的预测误差,其平均绝对相对误差为3.43%,图3是用改进的算法计算该天24小时的负荷值与实际值的比较,图4为改进后的算法的24点的相对误差,其平均绝对相对误差为2.94%,由此可见,改进算法是有效的。
4 小结
本文运用卡尔曼滤波理论建立了短期负荷预测模型,并进行短期负荷预测,通过算例证实了卡尔曼滤波模型预测的可行性。同时针对负荷预测的特点,通过对卡尔曼滤波算法的改进,提高了预测的精度。
由于卡尔曼滤波器在递推过程中不断用新息对状态估计进行修正,所以卡尔曼滤波是渐进稳定的,当时间序列足够长时,初始状态的状态值、协方差阵对估计的影响都将衰减为零。所以卡尔曼滤波模型能够不断更新状态信息,获得比较准确的估计值。此方法不仅可以用于短期预测,同样可以用于超短期负荷预测。
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)
