大电流便携式DC/DC变换中MOSFET功耗的计算
0 引言
众所周知,今天的便携式电源设计者所面临的最严峻挑战就是为当今的高性能CPU提供电源。近年来,内核CPU所需的电源电流每两年就翻一番,即便携式内核CPU电源电流需求会高达40A之大,而电压在0.9V和1.75V之间。事实上,尽管电流需求在稳步增长,而留给电源的空间却并没有增加,这个现实已达到甚至超出了在热设计方面的极限。
对于如此大电流的电源,通常将其分割为两个或多相,即每一相提供15A到25A,例如,将一个40A电源变成了两个20A电源。虽然可以使元器件的选择更容易,但是并没有额外增加板上或环境空间,对于减轻热设计的工作基本上没有多大帮助。这是因为在设计大电流电源时,MOSFET是最难确定的器件。这一点在笔记本电脑中尤其显著,在这种环境中,散热器、风扇、热管和其它散热方式通常都留给了CPU。而电源设计常常要面临诸多不利因素,诸如狭小的空间和静止的气流以及其元器件散发的热量等恶劣环境,而且,没有任何其它方式可以用来协助散热。
那么如何挑选MOSFET呢?回答是,在挑选MOSFET时,首先要选择有足够的电流处理能力的,并具有足够的散热通道的,最后还要从量化上考虑必要的热耗和保证足够的散热路径,据此,计算出MOSFET的功耗,并确定它们的工作温度。本文分析了一个多相、同步整流、降压型CPU电源中MOSFET功耗的计算方法。
1 MOSFET功耗的计算
为了确定一个MOSFET是否适合于特定的应用,必须计算其功耗,MOSFET功耗(PL)主要包含阻性损耗(PR)和开关损耗(PS)两部分,即
PL=PR+PS
MOSFET的功耗很大程度上依赖于它的导通电阻RDS(on),但是,MOSFET的RDS(on)与它的结温Tj有关。而Tj又依赖于MOSFET管的功耗以及MOSFET的热阻θJA。由于功耗的计算涉及到若干个相互依赖的因素,为此,可以采用一种迭代过程获得我们所需要的结果,如图1流程所示。
图1 选择同步整流和开关MOSFET的迭代过程流程
迭代过程起始于为每个MOSFET假定一个Tj,然后,计算每个MOSFET各自的功耗和允许的环境温度。当允许的环境温度达到或略高于机壳内最高温度设计值时,这个过程便结束了。这是一种逆向的设计方法,因为,先从一个假定的Tj开始计算,要比先从环境温度计算开始容易一些。
能否将这个计算所得的环境温度尽可能地提高呢?回答是不行的。因为,这势必要求采用更昂贵的MOSFET,并在MOSFET下铺设更多的铜膜,或者要求采用一个更大、更快速的风扇产生气流等,所有这些都是不切实际的。
对于开关和同步整流MOSFET,可以选择一个允许的最高管芯结温Tj(hot)作为迭代过程的出发点,多数MOSFET的数据手册只规定了+25℃下的最大RDS(on),不过最近有些产品也提供了+125℃下的最大值。MOSFET的RDS(on)随着温度的增高而增加,典型温度系数在0.35%/℃~0.5%/℃之间,如图2所示。如果拿不准,可以用一个较为保守的温度系数和MOSFET的+25℃规格(或+125℃规格),在选定的Tj(hot)下以最大RDS(on)作近似估算,即
RDS(on)hot=RDS(on)SPEC{1+0.005×〔Tj(hot)-TSPEC〕}(1)
式中:RDS(on)SPEC为计算所用的MOSFET导通电阻;
TSPEC为规定RDS(on)SPEC时的温度。
图2 典型功率MOSFET导通电阻的温度系数
〔在0.35%/℃(实线)至0.5%/℃虚线之间〕
利用计算出的RDS(on)hot可以确定同步整流和开关MOSFET的功耗。为此,将进一步讨论如何计算各个MOSFET在给定的管芯温度下的功耗,以及完成迭代过程的后续步骤,其整个过程详述如图1所示。
1.1 同步整流的功耗
除最轻负载外,同步整流MOSFET的漏、源电压在开通和关闭过程中都会被续流二极管钳位。因此,同步整流几乎没有开关损耗,它的功耗PL只须考虑阻性损耗即可。最坏情况下的损耗发生在同步整流工作在最大占空比时,也就是输入电压达到最低时。利用同步整流的RDS(on)和工作占空比,通过欧姆定律可以近似计算出它的功耗,即
PL=〔×RDS(on)hot〕×(2)
1.2 开关MOSFET的功耗
开关MOSFET的阻性损耗PR计算和同步整流非常相似,也要利用它的占空比(但不同于前者)和RDS(on)hot,即
PR=〔×RDS(on)hot〕×(3)
开关MOSFET的开关损耗计算起来比较困难,因为它依赖于许多难以量化并且没有规范的因素,这些因素同时影响到开通和关断过程。为此,可以首先用以下粗略的近似公式对某个MOSFET进行评价,然后通过实验对其性能进行验证,即
PS=(4)
式中:Crss为MOSFET的反向传输电容(数据手册中的一个参数);
fs为开关频率;
Igatb为MOSFET的栅极驱动器在MOSFET处于临界导通(Vgs位于栅极充电曲线的平坦区域)时的吸收/源出电流。
功耗 计算 MOSFET 变换 便携式 DC 电流 相关文章:
- 可穿戴设备要流行,全方位高效电源管理是前提(12-09)
- 基于BQ25504的低功耗、增压型转换器的设计研究(12-09)
- 一款无Y电容原边调整的低功耗充电器设计(12-09)
- 超低功耗倾角测量仪的设计(12-09)
- 六大低功耗、高性能电源管理解决方案(12-08)
- 浅析低功耗多模式大功率电源制作步骤(12-05)