大电流便携式DC/DC变换中MOSFET功耗的计算
若从成本因素考虑,将选择范围缩小到特定的某一代MOSFET(不同代MOSFET的成本差别很大),就可以在这一代的器件中找到一个能够使功率耗散最小的器件。这个器件应该具有均衡的阻性和开关损耗,使用更小、更快的器件所增加的阻性损耗将超过它在开关损耗方面的降低,而使用更大〔而RDS(on)更低〕的器件所增加的开关损耗将超过它对于阻性损耗的降低。 如果Vin是变化的,需要在Vin(max)和Vin(min)下分别计算开关MOSFET的功耗。最坏情况可能会出现在最低或最高输入电压下。该功耗是两种因素之和:在Vin(min)时达到最高的阻性耗散(占空比较高),以及在Vin(max)时达到最高的开关损耗。一个好的选择应该在Vin的两种极端情况下具有大致相同的功耗,并且在整个Vin范围内保持均衡的阻性和开关损耗。 如果损耗在Vin(min)时明显高出,则阻性损耗起主导作用。这种情况下,可以考虑用一个电流更大一点的MOSFET(或将一个以上的MOSFET相并联)以降低RDS(on)。但如果在Vin(max)时损耗显著高出,则应该考虑用电流小一点的MOSFET(如果是多管并联的话,或者去掉一个M0SFET),以便使其开关速度更快一点。如果阻性和开关损耗已达平衡,但总功耗仍然过高,也有多种办法可以解决: ——改变或重新定义输入电压范围; ——降低开关频率以减小开关损耗,或选用RDS(on)更低的MOSFET; ——增加栅极驱动电流,有可能降低开关损耗; ——采用一个技术改进的MOSFET,以便同时获得更快的开关速度、更低的RDS(on)和更低的栅极电阻。 需要指正的是,脱离某个给定的条件对MOSFET的尺寸作更精细的调整是不大可能的,因为器件的选择范围是有限的。选择的底线是MOSFET在最坏情况下的功耗必须能够被耗散掉。 2 关于热阻 按照图1所示,继续进行迭代过程的下一步,以便寻找合适的MOSFET来作为同步整流和开关MOSFET。这一步是要计算每个MOSFET周围的环境温度,在这个温度下,MOSFET结温将达到我们的假定值。为此,首先需要确定每个MOSFET结到环境的热阻θJA。 热阻的估算可能会比较困难。单一器件在一个简单的印刷板上的θJA的测算相对容易一些,而要在一个系统内去预测实际电源的热性能是很困难的,因为,那里有许多热源在争夺有限的散热通道。如果有多个MOSFET被并联使用,其整体热阻的计算方法,和计算两个以上并联电阻的等效电阻一样。 我们可以从MOSFET的θJA规格开始。对于单一管芯、8引脚封装的MOSFET来讲,θJA通常接近于62℃/W。其他类型的封装,有些带有散热片或暴露的导热片,其热阻一般会在40℃/W至50℃/W(见表1所列)。可以用下面的公式计算MOSFET的管芯相对于环境的温升Tj(rise),即 Tj(rise)=PL×θJA(5) 接下来,计算导致管芯达到预定Tj(hot)时的环境温度Tambient, 即 表1 MOSFET封装的典型热阻 最小引线面积 敷铜4.82g/cm2
说明:由于封装的机械特性、管芯尺寸和安装及绑定方法等原因,所以同样封装类型的不用器件,以及不同制造商出品的相似封装的热阻也各不相同,为此,应仔细考虑MOSFET数据手册中的热信息。 封装 θJA/(℃/W) θJA/(℃/W) θJA/(℃/W) SOT23(热增强型) 270 200 75 SOT89 160 70 35 SOT223 110 45 15 8引脚μMAX/Micro8(热增强型) 160 70 35 8引脚TSSOP 200 100 45 8引脚SO(热增强型) 125 62.5 25 D-PAK 110 50 3 D2-PAK 70 40 2
Tambient=Tj(hot)-Tj(rise)(6)
如果计算出的θJA低于机壳的最大额定环境温度,必须采用下列一条或多条措施:
——升高预定的Tj(hot),但不要超出数据手册规定的最大值;
——选择更合适的MOSFET以降低其功耗;
——通过增加气流或MOSFET周围的铜膜降低θJA。
再重算Tambient(采用速算表可以简化计算过程,经过多次反复方可选出一个可接受的设计)。而表1为MOSFET封装的典型热阻。
如果计算出的Tambient高出机壳的最大额定环境温度很多,可以采取下列一条或全部措施:
——降低预定的Tj(hot);
——减小专用于MOSFET散热的铜膜面积;
——采用更廉价的MOSFET。
这些步骤是可选的,因为在此情况下MOSFET不会因过热而损坏。不过,通过这些步骤只要保证Tambient高出机壳最高温度一定裕量,便可以降低线路板面积和成本。
上述计算过程中最大的误差源来自于θ JA。应该仔细阅读数据手册中有关θJA规格的所有注释。一般规范都假定器件安装在4.82g/cm2的铜膜上。铜膜耗散了大部分的功率,不同数量的铜膜θ JA差别很大。例如,带有4.82g/cm2铜膜的D-Pak封装的θ JA会达到50℃/W。但是如果只将铜膜铺设在引脚的下面,θJA将高出两倍(见表1)。如果将多个MOSFET并联使用,θ JA主要取决于它们所安装的铜膜面积。两个器件的等效θ JA可以是单个器件的一半,但必须同时加倍铜膜面积。也就是说,增加一个并联的MOSFET而不增加铜膜的话,可以使RDS(on)减半但不会改变θ JA很多。最后,θ JA规范通常都假定没有任何其它器件向铜膜的散热区传递热量。但在大电流情况下,功率通路上的每个元器件,甚至是印刷板线条都会产生热量。为了避免MOSFET过热,须仔细估算实际情况下的θ JA,并采取下列措施:
功耗 计算 MOSFET 变换 便携式 DC 电流 相关文章:
- 可穿戴设备要流行,全方位高效电源管理是前提(12-09)
- 基于BQ25504的低功耗、增压型转换器的设计研究(12-09)
- 一款无Y电容原边调整的低功耗充电器设计(12-09)
- 超低功耗倾角测量仪的设计(12-09)
- 六大低功耗、高性能电源管理解决方案(12-08)
- 浅析低功耗多模式大功率电源制作步骤(12-05)