微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > Protel 99 SE在过压欠压保护电路设计中的应用

Protel 99 SE在过压欠压保护电路设计中的应用

时间:04-02 来源:互联网 点击:

摘要:基于电子设计自动化(EDA)软件Protel 99 SE设计了过压、欠压保护电路;利用Protel 99 SE的“DC Sweep Analysis”、“Transi-ent/Fourier Analysis”两种方式对所设计的电路进行了仿真测试,并依照仿真结果完善了设计;当电气设备的电源电压波动超出正常范围时该电路能自动切断电源,待电源电压恢复正常并经过一定的延时之后又能自动接通电源,使电气设备得到保护。
关键词:仿真分析;瞬态特性分析;直流扫描分析;Protel 99 SE

电气设备的工作电压都有一个安全范围,电源电压波动超出这个范围会造成电气设备工作不稳定甚至损坏。为了使电气设备的工作免受电源电压波动的影响,利用EDA软件Protel 99 SE设计了过压、欠压保护电路,当电源电压在185~245 V范围时,它能够向负载正常供电,当电源电压超出这个范围时它能切断电源,待电源电压恢复正常并经一定时间延时后又能够自动接通,使电气设备得到保护。

1 电路设计
过压欠压保护电路如图1所示。变压器TF1将220 V市电变为12 V的交流电;二极管D1~D4、电容器C3,C4组成的整流滤波电路将交流电转换为直流电;由R1,R7,R2,R8组成的串联电路对电源电压进行取样;控制及开关电路由555定时器IC2、三极管Q2和双向可控硅T组成;LM7808为IC2提供稳定的8.2 V电源电压。

1.1 电路工作原理
当市电在185~245 V之间时,经过变压器TF1降压后的交流电压在10.1~13.4 V之间,与之对应的直流电压Ui为13.5~18 V。由R2,R8,R9,D6构成的低电压取样电路接到IC2的2脚,由R1,R7,R6,D5,Q1反相器构成的高电压取样电路也接到IC2的2脚,图1中A点电压小于0.6 V,Q1,D5截止,2脚电压大于Vcc/3,6脚的高电平使IC2处于复位状态,3脚输出低电平,三极管Q2、双向可控硅T导通,负载获得正常的市电。当市电低于185 V时,由R2、R8等构成的低电压取样电路使得IC2的2脚电压低于Vcc/3,IC2被触发处于置位状态,3脚输出高电平,三极管Q2、双向可控硅T截止,负载与交流电源断开,实现欠压保护。当市电高于245 V时,由R1,R7等构成的高电压取样电路使得电路A点电
压大于0.6 V,三极管Q1及二极管D5导通,IC2的2脚电压低于Vcc/3,IC2被触发处于置位状态,3脚输出高电平,三极管Q2、双向可控硅T截止,负载与交流电源断开,实现过压保护。当市电高于245 V(或低于185 V),IC2的2脚电压小于Vcc/3被触发,3脚输出高电平的同时,电容器C7通过电阻R4充电,约6 min之后才能使IC2的6脚电压大于2Vcc/3,在这之前,即使市电突然回到185~245 V,2脚电压大于Vcc/3,IC2也不会复位,电源仍处于断开状态,也就是说负载一旦断电,只能在6 min后才能向负载恢复正常供电,实现了对负载的延时通电保护。
1.2 过压、欠压保护电路设计
1.2.1 185 V市电欠压取样电路设计
市电为185 V的低电压时,图1所示电路中Ui=13.5 V,IC2的2脚电压应为2.73 V;分别取R2,R9,R5为20 kΩ,2.7 kΩ,150 kΩ,计算可得R8应为3.15 kΩ。
1.2.2 245 V市电过压取样电路设计
市电为245 V的高电压时,图1所示电路中Ui=18.0 V,A点电压应为0.7 V。取R1=15 kΩ,计算可得R7为0.6 kΩ。
1.2.3 延时电路设计
对延时电路的要求是,IC2时基电路由输出高电平转换到输出低电平,即负载由断电到正常得电至少要间隔6 min以上,因此电路参数必须满足,现取T=6 min,C7=220 μF,计算可得R4=1.5 MΩ。
按以上计算设计可得图1所示电路。

2 电路仿真
采用EDA软件对电路进行仿真,电路越是复杂就越易出现“Singular Maxtrix”,“Gmin stepping failed”,“Source stepping failed”,“Iteration limit reached”,“Timestep too small”,“Run simulation(s)aborted”等仿真错误。对于图1所示电路,为了避免仿真错误的发生,可对电路进行分块简化,去掉IC1集成稳压器,用8.2 V直流电压源Vcc代之。IC1对整流滤波电路的负载作用可用等效电阻R13代替,由计算可知R13约为400 Ω;再去掉电路延时功能便得到与图1等效的仿真电路图2。

电路仿真主要采用瞬态特性分析及直流扫描分析两种方式。由于过压欠压保护电路的交流输入电压有效值在仿真过程中不能自动地连续变化,且最大值有可能大于245 V,其对应的峰值电压Up也可能超出±347 V范围,因此,两种分析方式的电压范围与输入电压的峰值相对应可设定为-370~+370 V,仿真时也可根据实际需要作适当

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top