微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 多路输出开关电源的设计以及实际应用原则

多路输出开关电源的设计以及实际应用原则

时间:12-09 来源:互联网 点击:

对现代电子系统,即便是最简单的由单片机和单一I/O接口电路所组成的电子系统来讲,其电源电压一般也要由+5V,±15V或±12V等多路组成,而对较复杂的电子系统来讲,实际用到的电源电压就更多了。目前主要由下述诸多电压组合而成:

+3.3V,+5V,±15V,±12V,-5V,±9V,+18V,+24V、+27V、±60V、+135V、+300V、-200V、+600V、+1800V、+3000V、+5000V

(包括一个系统中需求多个上述相同电压供电电源)等。不同的电子系统,不仅对上述各种电压组合有严格的要求,而且对这些电源电压的诸多电特性也有较严格的要求,如电压精度,电压的负载能力(输出电流),电压的纹波和噪声,起动延迟,上升时间,恢复时间,电压过冲,断电延迟时间,跨步负载响应,跨步线性响应,交叉调整率,交叉干扰等。

多路输出电源

对于电源应用者来讲,一般都希望其所选择的电源产品为“傻瓜型”的,即所选择的电源电压只要负载不超过电源最大值,无论系统的各路负载特性如何变化,而各路电源电压依然精确无误。仅就这一点来讲,目前绝大多数的多路输出电源是不尽人意的。为了更进一步说明多路输出电源的特性,首先从图1所示多路输出开关电源框图讲起。

从图1可以看到,真正形成闭环控制的只有主电路Vp,其它Vaux1、Vaux2等辅电路都处在失控之中。从控制理论可知,只有Vp无论输入、输出如何变动(包括电压变动,负载变动等),在闭环的反馈控制作用下都能保证相当高的精度(一般优于0.5%),也就是说Vp在很大程度上只取决于基准电压和采样比例。对Vaux1,Vaux2而言,其精度主要依赖以下几个方面:

1)T1主变器的匝比,这里主要取决于Np1:Np2或Np1:Np3

2)辅助电路的负载情况。

3)主电路的负载情况。

注:如果以上3点设定后,输入电压的变动对辅电路的影响已经很有限了。

图1多路输出开关电源框图图3辅助电路加一个线性稳压调节器

在以上3点中,作为一个具体的开关电源变换器,主变压器匝比已经设定,所以影响辅助电路输出电压精度最大的因素为主电路和辅电路的负载情况。在开关电源产品中,有专门的技术指标说明和规范电源的这一特性,即就是交叉负载调整率。为了更好地讲述这一问题,先将交叉负载调整率的测量和计算方法讲述如下。

电源变换器多路输出交叉负载调整率测量与计算步骤

1)测试仪表及设备连接如图2所示。

2)调节被测电源变换器的输入电压为标称值,合上开关S1、S2…Sn,调节被测电源变换器各路输出电流为额定值,测量第j路的输出电压Uj,用同样的方法测量其它各路输出电压。

3)调节第j路以外的各路输出负载电流为最小值,测量第j路的输出电压ULj。

4)按式(1)计算第j路的交叉负载调整率SIL。

SIL=×100%(1)

式中:ΔUj为当其它各路负载电流为最小值时,Uj与该路输出电压ULj之差的绝对值;

Uj为各路输出电流为额定值时,第j路的输出电压。

根据上面的测试及计算方法可以将交叉负载调整率理解为:所有其它输出电路负载跨步变(100%-0%时)对该路输出电压精度影响的百分比。

多路输出开关电源

由图1原理所构成的实际开关电源,主控电路仅反馈主输出电压,其它辅助电路完全放开。此时假设主、辅电路的功率比为1:1。从实际测量得主电路交叉负载调整率优于0.2%,而辅电路的交叉负载调整率大于50%。无论开关电源设计者还是应用者对大于50%的交叉负载调整率都将是不能接受的。如何降低辅电路交叉负载调整率,最直接的想法就是给辅助电路加一个线性稳压调节器(包括三端稳压器,低压差三端稳压器)如图3所示。

从图3可知,由于引入了线性稳压调节器V,所以在辅路上附加了一部分功率损耗,功率损耗为P=(Vaux′-Vaux1)Iaux,而要使辅电路的交叉负载调整率小,就必须有意识地增大线性调整器的电压差(Vaux′-Vaux1),即就是要有意识增大Vaux′,其带来的缺点就是增加了电源的功率损耗,降低了电源的效率。

以图1及图3原理为基础设计和应用电源时,应注意的原则为:

1)主电路实际使用的电流最小应为最大满输出电流的30%;

2)主电路电压精度应优于0.5%;

3)辅电路功率最好小于主电路功率的50%;

4)辅电路交叉负载调整率不大于10%。

改进型多路输出开关电源

在很多应用场合中,要求2路输出的功率基本相当,比如±12V/0.5A,±15V/1A。我们通过多年的实践,设计了如图4所示的电路,能较好地达到提高交叉负载调整率的目的。

图4电路设计思想的核心有以下2点。

1)将正负2路输出滤波电感L1、L2绕制在同一磁芯上,采用双线并绕的方法,从而保证L1、L2电感量完全相同。并注意实际接

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top