微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 电源优化解决太阳能光伏的技术窘境

电源优化解决太阳能光伏的技术窘境

时间:05-24 来源:互联网 点击:

在新能源领域, 太阳能光伏(PV) 市场以30%以上的年增长率在过去10年不断吸引了众多投资者。事实上, 开发太阳能光伏的基本技术早在50年前便已面世,但一直未获得很大进展。正因如此,目前市场上的光伏模块及逆变器技术似乎在成本效益及回报上还没有达到用户的要求,未被广泛使用, 还需依靠政府补贴。但自从业界引进DC/DC电源优化器以及DC/AC微逆变器等分布式技术后,太阳能光伏产业便开始了新一轮技术变革。

太阳能光伏技术的窘境

太阳能光伏系统及集成电路大约都在50年前开始发展。期间,集成电路在工艺和专利技术方面不断有新的突破,成本也在大幅下降;而太阳能技术仅在效率及稳定性方面有所改进。太阳能发电厂仍然由太阳能光伏模块阵列组成,这些光伏模块将阳光转化为直流电能,并由集中式逆变器将直流电转为交流电,然后输往电网。

图1 采用集中式MPPT技术的并网太阳能光伏系统

整个业界虽然一直致力于提高发电量,但这方面的技术研发工作却一直以提高太阳能电池的效率为主,或集中开发有助于提高发电量的先进生产工艺。但若要将太阳能的发电成本降低至与传统电网相当的水平,上述研发方向预计不会取得理想成果,因为其中涉及的成本往往很高,但效率较低。例如,晶体硅光伏模块虽然在效率方面有一定幅度的提升(每年约0.5%),但其它方面的性能基本上与20年前无异。

过去10年来,薄膜光伏模块的单位发电成本虽然有明显下跌,但目前尚未证明这种技术具有长期的稳定性。与此同时,由于美国政府为光伏太阳能用户提供了可观的补贴,因此,10年来太阳能系统的市场渗透率大幅飙升,新建系统的总发电量高达10GW以上。2010年新安装的太阳能光伏系统的总发电量高达15至17GW。部分国家如德国,更长期为太阳能用户提供高额的政府电力回购制度(Feed-in Tariff, FIT),极大地拉动了太阳能光伏的市场需求。太阳能光伏产业面对的挑战是如何深入了解现有太阳能系统的实际市场环境以及相关的技术问题,以确保一旦政府停止提供补贴,这个市场仍然可以继续高速发展。

阴影及失配问题

阴影及失配问题已令多家知名公司以及新兴公司研发解决上述问题的新技术。太阳能光伏阵列中,一个模 块出问题,会影响所串联的其它模块,且任何一组串联都会影响阵列上的其它串联。准确地说,光伏系统若出现电压及电流方面的不平衡,便会产生失配问题。其中原因很多,如局部的阴影、移动的浮云、附近物体的反光、光伏模块的不同角度及排列方式、污垢、不同程度的老化、细微的裂缝以及太阳能阵列之间的温差。所有太阳能系统都或多或少存在失配的问题,但很多情况下因失配而导致的能源损耗会被忽略或低估。许多独立的研究显示,即便只有10%的光伏模块被阴影遮蔽,整个系统的功耗将高达50%。

目前的太阳能系统都试图利用中央逆变器的特殊算法解决这个失配问题。这种称为最大功率点跟踪(MPPT)技术的特殊算法, 可以调整光伏系统直流线路上的电压,以便捕获尽可能多的能量。这种方法的局限是,逆变器无法深入“看到”光伏阵列上的模块和串,因此只能作缓慢而有限的调整。

电源优化器方案

2008年,美国国家半导体首次将电源优化技术,或称“电源优化器”引入市场。其特点是在光伏模块上利用核心模拟电路技术及电源管理芯片,提高太阳能光伏系统的输出效率。

过去一年多,集成电路与太阳能光伏模块供应商已进一步加强了彼此间的合作。例如,为太阳能系统提供分布式集成电路及电源优化器的美国国家半导体,已宣布与全球最大的晶体硅光伏模块供应商尚德公司(Suntech)建立了合作关系。

对于太阳能系统来说,引进集成电路会有增值作用,因为电源优化器的主要目的是恢复因某一模块受损而失掉的能量,并确保随时提高每一光伏模块的能效。电源优化器的主要作用是通过MPPT技术提供DC/DC优化,研究显示,电源优化器可以在太阳能系统长达25年的寿命周期内将能量采集量提高25%。

目前市场上有几种不同的DC/DC电源优化器解决方案,我们必须深入研究其差别,因为不同的架构有不同的效果。例如,当调整某一受损串内模块的MPPT时,部分模块的电压需要下调,另一部分需要调升。这个升/降压架构的优点是可以提高能量收集量,并提供最有效的设计方法。部分优化器只提供降压功能,虽然从电源转换效率的角度看,这个设计可以发挥较高的效率,但能量收集量未必能相应提高。此外,部分优化器只提供升压功能,其优点是可将模块的电压提高至与直流线路电压相等的水平,但缺点是电流较高以及输入电压范围较小,因此较难在有阴影的情况下充分发挥系统的

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top