串联式混合动力系统APU结构设计
离合器的状态信息。VCU的输出经驱动电路可直接控制常闭阀A、常开阀B和排气阀C的开闭,调节驱动活塞的气缸压力,从而控制离合器的接合与脱开。
2.2 APU起动控制
APU的起动控制需与电控离合器系统的控制相配合,起动过程可以分为3步:脱开离合器、发动机起动至平稳工况和接合离合器。起动过程要求离合器脱开迅速可靠,接合平稳,对发动机冲击尽可能小。
APU发出起动指令后,离合器首先脱开,其过程为VCU向常闭阀A输出高电平信号,使其打开,高压气体通过常闭阀A和常开阀B进入气缸推动活塞运动,使离合器脱开。脱开过程所用时间与高压气压力以及活塞有效截面积有关。气体压力越高,截面越大,活塞作用力越大,离合器脱开所用时间越短。此外,从常闭阀A到活塞气缸的气路长度也会对脱开时间有影响。
发动机在离合器脱开后起动,起动成功后,APU发出接合离合器指令。接合过程可以分为3个阶段(见图3)。第一阶段,离合器压盘与发动机飞轮没有接触,分离轴承位移增加,但离合器不传递扭矩;第二阶段,压盘与飞轮开始接合,随着分离轴承位移增加,离合器传递的扭矩也增加;第三阶段,压盘与飞轮完全接合,离合器传递的扭矩不再增加。接合过程控制目标是尽可能缩短第一、第三阶段的时间,同时保证第二阶段接合转矩的上升不要过快,减少对发动机的冲击。
离合器控制过程中,首先关闭常开阀B以形成常开阀B至活塞气缸的封闭回路,之后调节排气阀C的开闭频率,控制气缸内气压降低的速度,实现三阶段接合过程。
APU起动过程的控制阀信号时序见图4。T0时刻是起动过程的起始时刻,T0~T1离合器脱开,T1~T2发动机起动,T2~T3,T3~T4,T4~T5分别为离合器接合过程的第一、第二和第三阶段,排气阀C上输出不同占空比的信号。
3 试验验证
3.1 APU起动过程验证
在试验台架上验证APU起动过程。试验前先标定离合器分离轴承位置与离合器状态之间的关系,以离合器完全脱开时分离轴承的位置作为零点,压盘与飞轮刚开始接触时分离轴承位移为8mm,压盘与飞轮完全接合时分离轴承位移为16mm,分离轴承的最大位移为18mm。
APU接到起动指令后,首先发出脱开离合器指令(见图5),高压气进入驱动活塞气缸,推动分离轴承从离合器接合位置运动至离合器完全脱开,整个过程持续0.85s。
当离合器进入脱开状态后,APU向发动机发出起动指令。发动机5s内可以完成起动,进入怠速状态,转速为700r/min左右。
第6s起,APU发出接合离合器指令(见图6)。
分离轴承的动作在接合过程中经历了先快、后慢、再快的过程,与前文所述离合器接合过程3个阶段相符。由于第三阶段分离轴承位移对发动机的扭矩输出没有影响,所以认为离合器的接合过程到第二阶段结束就已完成,总共需要1.2s。离合器接合过程对发动机的冲击使发动机转速下降200r/min左右,在可接受范围。
第7.2s起,发动机飞轮与离合器压盘完全接合,APU起动过程完成,可以向发电机发出励磁信号,APU对外输出能量。
3.2 APU整车性能试验
将APU装配在一辆串联式混合动力城市客车上,在实际道路条件下与一辆同类型普通天然气城市客车做对比试验。对比车型采用130kW6缸天然气发动机,5挡手动变速器,车身尺寸与混合动力客车相同。混合动力客车由于增加了电机、动力电池等设备,整备质量较对比车型略重。气耗试验时,两车采用同样的城市公交驾驶循环,且保证混合动力客车的动力电池测试前后SOC保持不变。排放试验由于条件限制,只能在台架上进行,测试工况由道路工况反推得到。
由于整备质量增加,串联式混合动力城市客车动力性不如普通天然气客车,但还能满足城市公交运行工况。混合动力客车的燃气消耗量和排放均低于普通客车,表明该APU系统运用在整车上时,可以降低燃油消耗和减少排放。
4 结语
a)APU起动过程需7.2s,其中离合器脱开过程0.85s,接合过程1.2s,对发动机冲击保持在可接受范围内,满足整车控制要求;
b)该APU应用在整车上,与同类型普通天然气城市客车相比,燃气消耗量降低了26%,NOx排放降低70%,CO排放降低65%,HC降低40%,具有节能减排效果。
- 采用三明治结构设计 大幅度提高MLCC产品应用可靠性(12-09)
- 大面积单结集成型a-Si:H太阳电池的结构设计与制备分析(02-13)
- 叠栅MOSFETs的结构设计与研究(09-13)
- 控制系统中常见的几种地线详解(10-13)
- VxWorks操作系统的CompactPCI测试仿真系统(12-12)
- 基于VxWorks操作系统的CompactPCI仿真系统(12-12)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...