高频开关电源设计与应用实例
功率因数校正电路的目的,就是使电源的输入电流波形按照输入电压的变化成比例的变化。使电源的工作特性就像一个电阻一样,而不在是容性的。
目前在功率因数校正电路中,最常用的就是由BOOST变换器构成的主电路。而按照输入电流的连续与否,又分为DCM、CRM、CCM模式。DCM模式,因为控制简单,但输入电流不连续,峰值较高,所以常用在小功率场合。CCM模式则相反,输入电流连续,电流纹波小,适合于大功率场合应用。介于DCM和CCM之间的CRM称为电流临界连续模式,这种模式通常采用变频率的控制方式,采集升压电感的电流过零信号,当电流过零了,才开通MOS管。这种类型的控制方式,在小功率PFC电路中非常常见。
今天我们主要谈适合大功率场合的CCM模式的功率因数校正电路的设计。
要设计一个功率因数校正电路,首先我们要给出我们的一些设计指标,我们按照一个输出500W左右的APFC电路来举例:
已知参数:
交流电源的频率fac——50Hz
最低交流电压有效值Umin——85Vac
最高交流电压有效值Umax——265Vac
输出直流电压Udc——400VDC
输出功率Pout——600W
最差状况下满载效率η——92%
开关频率fs——65KHz
输出电压纹波峰峰值Voutp-p——10V
那么我们可以进行如下计算:
1,输出电流Iout=Pout/Udc=600/400=1.5A
2,最大输入功率Pin=Pout/η=600/0.92=652W
3,输入电流最大有效值Iinrmsmax=Pin/Umin=652/85=7.67A
4,那么输入电流有效值峰值为Iinrmsmax*1.414=10.85A
5,高频纹波电流取输入电流峰值的20%,那么Ihf=0.2*Iinrmsmax=0.2*10.85=2.17A
6,那么输入电感电流最大峰值为:ILpk=Iinrmsmax+0.5*Ihf=10.85+0.5*2.17=11.94A
7,那么升压电感最小值为Lmin=(0.25*Uout)/(Ihf*fs)=(0.25*400)/(2.17*65KHz)=709uH
8,输出电容最小值为:Cmin=Iout/(3.14*2*fac*Voutp-p)=1.5/(3.14*2*50*10)=477.7uF,实际电路中还要考虑hold up时间,所以电容容量可能需要重新按照hold up的时间要求来重新计算。实际的电路中,我用了1320uF,4只330uF的并联。
有了电感量、有了输入电流,我们就可以设计升压电感了!
PFC电路的升压电感的磁芯,我们可以有多种选择:磁粉芯、铁氧体磁芯、开了气隙的非晶/微晶合金磁芯。这几种磁芯是各有优缺点,听我一一道来。
磁粉芯的优点是,μ值低,所以不用额外再开气隙了。气隙平均,漏磁小,电磁干扰比较低,不易饱和。缺点是,基本是环形的,绕线比较困难,不过目前市场上也出现了EE型的。另外,μ值随磁场强度的增加会下降。设计的时候需要反复迭代计算。
铁氧体磁芯的优点是损耗小,规格多,价格便宜,开了气隙后,磁导率稳定。缺点是需要开气隙,另外饱和点比较低,耐直流偏磁能力比较差。
非晶/微晶合金的优点是饱和点高,开气隙后,磁导率稳定。同样缺点是需要开气隙。另外,大都是环状的。
在此说明一下,环形铁芯虽然绕线比较困难,没有E型什么带骨架的那种容易绕。但是环形铁芯绕出来的电感分布电容小,对将来处理电磁兼容带来了很多便利之处。E型的骨架绕线一般都是绕好几层,那么层间电容比较大,对EMC产生不利影响。另外,开气隙的铁芯,在气隙处,铜损会变大。因为气隙处的漏磁在铜线上产生涡流损耗。
下面我们就选择一种环形磁粉芯来作为我们PFC电感的磁芯。我们上面已经计算出了几个参数:
输入电流最大有效值Iinrmsmax=Pin/Umin=652/85=7.67A
输入电感电流最大峰值为:ILpk=Iinrmsmax+0.5*Ihf=10.85+0.5*2.17=11.94A
升压电感最小值为Lmin=(0.25*Uout)/(Ihf*fs)=(0.25*400)/(2.17*65KHz)=709uH
下面继续计算:
线圈选择电流密度为5A/平方毫米,那么可以计算出我们需要用的漆包线的线径为:
2×SQRT(7.67/(5×3.14))=1.4毫米
因为我们这是按照最极限的输入电压也就是说按照最大的输入电流时来计算的。所以电流密度取的裕量比较大。实际按照不同的成本要求,也可以把电流密度取大一些,比如此处取电流密度为8A/平方毫米的话,那么可以得到线径为:
2×SQRT(7.67/(8×3.14))=1.1毫米
这也是可以接受的。
因为是CCM模式的工作方式,基波是低频的半正弦波,在此处我们就不考虑趋肤效应了。选用单根的漆包线就可以了。
常用的几个公式:
LI=NΔBAe
L:电感量,I:电流,N:匝数,ΔB:磁感应强度变化量,Ae:磁芯截面积
L
高频开关电源设计 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)