准谐振和谐振转换-两种提高电源效率的技术
LLC谐振转换器的模块示意图与双开关正激转换器截然不同。其之所以名曰“LLC”,是因为谐振电路的工作由3个组件来完成:变压器的磁化电感 (Lm)、变压器的漏电感 (Llk) 和谐振电容 (Cr)。对大漏电感的需求意味着必须一个额外的电感,或者是变压器的线圈需以增加漏电感的方式进行缠绕,以使其增大。LLC谐振转换器在初级端有一个半桥结构,但与双开关正激转换器不同的是,它不需要任何二极管。此外,还带有一个双开关正激转换器所没有的谐振电容,以及两个输出二极管与中心抽头变压器的输出相连。这些配置把谐振电路的交流输出整流为直流级,双开关正激应用所需的大输出电感在这里就不再需要了。
对于给定的功率级,准谐振反激式变压器的尺寸是最大的,因为它先把所有能量存储在初级侧,然后再将之转移到次级侧。双开关正激转换器则不然,它是在开关导通时把能量从初级侧转移到次级侧。和反激式转换器一样,双开关正激转换器也只使用一个磁极方向。LLC转换器却使用两个方向,所以在其它条件相同的情况下,对于给定的功率级,它的尺寸更小,无需考虑额外的漏电感或者是在变压器中包含的漏电感。
频率和增益
准谐振和LLC谐振开关的优势都包括了降低导通损耗,但缺点是频率随负载减小而增大。两种转换器的关断损耗都随频率的增大而变得严重。
这里,tOFF是关断时间,在轻载时上述效应会降低效率。飞兆半导体的准谐振FPS? 功率开关产品系列,比如FSQ0165RN,采用了一种特殊技术“频率钳位” (frequency clamp) 来弥补准谐振控制器固有的这种缺陷。控制器只需等待最短时间,对应最大频率,然后开关在下一个波谷时导通,这种方法可以提高轻载下的效率。FPS? FSFR2100 LLC 谐振转换器和包括FSQ0165RN在内的产品系列都具有突发模式功能,可降低极轻负载下的功耗。对于FSFR2100,如果系统需要,建议加入一个采用了FSQ510这类器件的辅助电源,以保持低待机功耗。
LLC 谐振转换器的另一个局限性是它的增益动态范围非常有限。图3所示为一个LLC 转换器的增益特性与频率及负载的关系。这种拓扑之所以广受欢迎是由于其频率随负载变化的改变较小,在100kHz的谐振频率上限,频率不随负载变化而改变。不过,它的增益动态范围很小,在1.0到1.4之间,如果1.2的增益代表一个220VAC输入电压的系统获得所需输出电压的增益,则动态范围允许189VAC 到 264VAC的输入电压范围。因此,这种拓扑不太可能适用于常见的输入电压范围,但只要通过精心设计来实现保持时间 (hold-up time) 的条件,就可以用于欧洲的输入范围。LLC谐振转换器通常与功率因数校正级一起使用,后者可为LLC转换器提供调节良好的输入电压。
通过增大漏电感与磁化电感的比值,可以增加增益动态范围,但代价是轻载效率因磁化电流变大而降低。实际上,这是通过采用第二个电感来实现的,因为如果漏电感太大的话,要获得可重复的漏/磁化电感比值是有实际限制的。
图3:LLC谐振转换器增益曲线示例
应用
准谐振反激式和 LLC 谐振转换器在嵌入式交流输入电源中的应用越来越广泛。
准谐振转换器的实际工作范围上从超低功率级到100W左右。对于集成式解决方案,7W/12V 电源的满负载效率约为81%;而对采用了带外部MOSFET的准谐振转换器的70W/22V电源,满负载效率则超过了88%。前者的待机功耗远低于150mW,后者的则小于350mW。采用较低的输出电压,效率必然会迅速降到上述水平之下。一个5W/5V的电源将在输出二极管上消耗至少10% 的额定输出功率。
准谐振拓扑还有一个好处是EMI远小于硬开关应用的,其频率将随400V输入电容上的纹波而变化,导致自然的频谱扩展。此外,由于开关行为在较低电压时发生,开关噪声减小,故共模EMI噪声也相应减小。
LLC谐振转换器的实际工作范围从70W左右到500W以上,带有一个PFC前端的FSFR2100已用于实现200W 到420W的电源。对于高达200W的应用,一般无需使用FSFR2100上的散热器,但通常建议在输出端使用一些肖特基二极管,而这些往往需要散热器。此外,也可以采用同步整流方法,这时因为采用了MOSFET (虽然MOSFET的控制信号不易产生),因此无需散热器。对于采用了肖特基二极管的应用,典型的峰值效率依照输入电压、输出电压和输出功率情况,大约在90%到95%之间。
- 正反激励式准谐振软开关电源(12-09)
- 基于UCC28600准谐振反激式开关电源的方案(12-08)
- 高效、极低EMI准谐振适配器设计诀窍(12-07)
- 基于安森美NCP1937控制器的电源应用(12-02)
- 一款没有尖峰的准谐振软开关推挽电路(11-29)
- 一种高可靠性准谐振反激式开关电源的设计(12-24)