微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > XTR115电流环电路原理及应用

XTR115电流环电路原理及应用

时间:11-11 来源:互联网 点击:

假如温度的测量范围是±100℃。在0℃时放大器的输出电压为VP=VQ=2.5 V,而这时电流环的输出电流应IO=4 mA+16/2mA=12 mA。而信号变化产生的电流应该在IOSIGNAL=16 mA/2=8mA。流过RIN的电流应该是I3=8mA/100=80μA。电阻RIN应该是RIN=2.5V/80μA=31.25 kΩ。在100℃时电流环的输出电流应该是IO=20mA。相对0℃时的输出增量是△IO=8mA。流过电阻RIN的电流增量应该是△I3=8mA/100=80μA。这时放大器的输出电压增量应该是△VP=25 kx80μA=2.5 V。而此时电桥的输出电压增量仅仅是△VT=17.56 mV。所以放大器的增益应该为G=2.5 V/17.56 mV=142.37倍。RG=50 k/(G-1)=353.68 Ω。
当温度在0℃时,电桥平衡,放大器的输出电压为VP=VQ=2.5 V。电流环的输出电流IO=12 mA。当温度在100℃时,放大器的输出电压为VP=5 V。电流环的输出电流IO=20 mA。当温度在-100℃时,放大器的输出电压为VP=0 V。电流环的输出电流IO=4mA。
然而,运算放大器INA128的最高输出电压达不到5 V;最低输出电压也达不到0V。所以测温范围达不到+100℃。一个简洁的解决方案是降低运算放大器INA128的增益,使运算放大器在100℃时的输出电压达到它的最大值Vomax=4 V。G=(4 V-2.5 V)/17.56 mV=85倍。RG=50 k/(G-1)=595 Ω。这时,当温度在100℃时,放大器的输出电压为VP=4V。电流环的输出电流IO=16.8 mA。当温度在-100℃时,放大器的输出电压为VP=1 V。电流环的输出电流IO=7.2 mA。虽然这样又带来了电流环的输出范围利用不足的缺点,但它并不影响正常测量。
外接晶体三极管只要选用Vceo>36 V,Icmax>32 mA,Poutmax>1.2 W的NPN三极管即可。如:2SC1846、2SC2568、2SC2611、2SC2621、等均可。

4 总结
本文针对各种工业场合中抗恶劣电磁干扰环境的需求,给出了一种利用XTR115两线制电流环进行信号传输的电路设计方法。该方法减少了传输线的噪声干扰和传输线的分布电阻产生的电压降,提高了数据通讯接口的可靠性和准确度,具有抗干扰能力强,数据传输准确的特点,在工业测量中具有广阔的应用前景。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top