电力电子设备热设计的分析及应用
的详细步骤
⑴确定设备(或元器件)的散热面积、散热器或周围空气的极值环境温度范围。
⑵确定冷却方式。
⑶对少量关键发热元器件进行应力分析,确定其最高允许温度和功耗,并对其失效率加以分析。
⑷按器件和设备的组装形式,计算热流密度。
⑸由器件内热阻(查器件手册)确定其最高表面温度。
⑹确定器件表面到散热器或空气的总热阻。
⑺根据热流密度等因素对热阻进行分析与分配,并对此加以评估,确定传热方法和冷却技术。
⑻选定散热方案。
9 热设计分析
9.1主要电子元器件热设计
⑴电阻器。电阻器的温度与其形式、尺寸、功耗、安装位置及方式、环境温度有关,一般通过本身的辐射、对流和引出线两端的金属热传导来散热,在正常环境温度下,经试验得知,对功率小于0.5W的炭膜电阻,通过传导散去的热量占50%,对流散热占40%,辐射散热占10%。因此在装配电阻器时,要使其引出线尽可能短,以减小热阻,安装方式应使其发热量大的面垂直于对流气体的通路,并加大与其他元器件之间的距离,以增加对流散热效果,电阻器的表面涂以无光泽的粗糙漆,可提高辐射散热能力。
⑵变压器。铁芯和线包是变压器的热源,传导是其内部的主要传热途径,因此要求铁芯与支架,支架与固定面都要仔细加工,保证良好接触,使其热阻最小,同时在底板上应开通风孔,使气流形成对流,在变压器表面涂无光泽黑漆,以加强辐射散热。
9.2模块的热设计
⑴模块热设计是使模块在上述任一传热路径上的热阻足够低,以保证元器件温度不超过规定值,将界面温度即散热片或导轨的表面温度控制在0℃~60℃。模块的热设计有两类问题:根据模块内部要求进行设计,包括界面温度、功耗和元器件的许用温度等;根据系统的环境、封装、单个或组合的模块功耗等要求,对整个系统进行热设计。
⑵ 模块内部的热设计。为满足电子模块的可靠性要求,设计上必须保证模块处于最大功耗时及在其额定界面温度下,使所有元器件的温度低于元器件的临界温度(即比有关规范规定的额定值的100%低20℃的温度)。元器件的瞬态临界温度(指额定值)可看作安全因子,当散热片和导轨温度达到80℃(比最高界面温度高20℃)时所有元器件的温度应低于或等于元器件的瞬态临界温度。
9.3整机散热设计
⑴ 确定整机的热耗和分布。
⑵ 根据整机结构尺寸初步确定散热设计方案。
⑶ 对确定的冷却方式进行分析(如强迫风冷的风机数量,选型,级联方式,风道尺寸,风量大小,控制方式等)。
⑷ 针对分析结果可利用热分析软件进一步验证。
⑸ 对散热方案进行调整进而最后确定。
9.4 机壳的热设计
电子设备的机壳是接受设备内部热量,并通过它将热量散发到周围环境中去的一个重要热传递环节。机壳的设计在采用自然散热和一些密闭式的电子设备中显得格外重要。试验表明,不同结构形式和涂覆处理的机壳散热效果差异较大。机壳热设计应注意下列问题:
(1)增加机壳内外表面的黑度,开通风孔(百叶窗)等都能降低电子设备内部元器件的温度;
(2)机壳内外表面高黑度的散热效果比两测开百叶窗的自然对流效果好,内外表面高黑度时,内部平均降温20℃左右,而两侧开百叶窗时(内外表面光亮),其温度只降8℃左右;
(3)机壳内外表面高黑度的降温效果比单面高黑度的效果好,特别是提高外表面黑度是降低机壳表面温度的有效办法;
(4)在机壳内外表面黑化的基础上,合理地改进通风结构(如顶板、底板、左右两侧板开通风孔等),加强空气对流,可以明显地降低设备的内部温度环境;
(5)通风口的位置应注意气流短路而影响散热效果,通风孔的进出口应开在温差最大的两处,进风口要低,出风口要高。风口要接近发热元件,是冷空气直接起到冷却元件的作用;
(6)在自然散热时,通风孔面积的计算至关重要,图3示出了通风孔面积与散热量的关系,可供设计通风口时作依据,亦可根据设备需要由通风口的散热量用下式计算通风孔的面积。
S0=Q/7.4×10-5·H · △t1. 5 (4)
式中:
S0——进风口或出风口的总面积〔cm2〕;
Q——通风孔自然散热的热量〔设备的总功耗p去壁面自然对流和辐射散去的热量〕〔W〕;
H——进出风口的高度差〔cm〕;
△t ==t2-t1——设备内部空气温度t2与外部空气温度t1之差〔0C〕。
(7)通风口的结构形式很多,有金属网,百叶窗等等,设计时要根据散热需要,既要使其结构简单,不易落灰,又要能满足强度,电磁兼容性要求和美观大方。
(8)密封机壳的散热主要靠对流和辐射,决定于机壳表面积和黑度,可以通过减
- 那些经典的过流保护电路应用举例(12-09)
- 便携应用的电源管理挑战(12-09)
- 技术解析:单片机应用系统的可靠性设计(12-09)
- 多路输出开关电源的设计以及实际应用原则(12-09)
- 变频电源分类及其应用领域详细介绍(12-08)
- 浅析工业领域对UPS电源的应用要求(12-08)
