热插拔保护电路设计及实例
引言
服务器、网络交换机、冗余存储磁盘阵列(RAID),以及其它形式的通信基础设施等高可用性系统,需要在整个使用生命周期内具有接近零的停机率。如果这种系统的一个部件发生了故障或是需要升级,它必须在不中断系统其余部分的情况下进行替换,在系统维持运转的情况下,发生故障的电路板或模块将被移除,同时替换部件被插入。这个过程被称为热插拔(hot swapping)(当模块与系统软件有相互作用时,也被称为hot plugging1)。为了实现安全的热插拔,通常使用带交错引脚的连接器来保证地与电源的建立先于其它连接,另外,为了能够容易的从带电背板上安全的移除和插入模块,每块印制板(PCB)或热插拔模块都带有热插拔控制器2。在工作状态下,控制器还可提供持续的短路保护和过流保护。
尽管切断或开启的电流会比较大,但大电流设计的一些微妙之处却常常未得到充分的考虑。“细节决定成败”,本文将重点分析热插拔控制电路中各部件的功能及重要性,并深入分析在设计过程中使用ADI公司ADM11773热插拔控制器时的设计考虑和器件选型标准。
热插拔技术
常用的两种系统电源电压为-48 V和+12 V,它们使用不同的热插拔保护配置。-48 V系统包含低端热插拔控制器和导通MOSFET;而+12 V 系统使用高端热插拔控制器和导通MOSFET。
-48 V方案来源于传统的通信交换系统技术,如高级通信计算架构(ATCA)系统、光网络、基站,以及刀片式服务器。48 V电源通常可由电池组提供,选用48 V是因为电源及信号能被传输至较远的距离,同时不会遭受很大损失;另外,在通常条件下,由于电平不够高,所以不会产生严重的电气冲击危险。采用负电压的原因是,当设备不可避免的暴露在潮湿环境中时,在正极端接地的情况下,从阳极到阴极的金属离子迁移的腐蚀性较弱。
然而,在数据通信系统中,距离并不是重要因素,+12 V电压会更加合理,它常用于服务器及网络系统中。本文将重点介绍+12 V系统。
热插拔事件
考 虑一个具有12 V背板及一组可移除模块的系统。每个模块必须能在不影响任意相邻模块正常工作的条件下被移除和替换。当没有控制器时,每个模块可能会对电源线造成较大的负载电容,通常在毫法量级。首次插入一个模块时,其未充电的电容需要所有可用的电流来对其进行充电。如果不对这个浪涌电流加以限制,这个很大的初始电流将会降低端电压,导致主背板上的电压大幅下降,使系统中的多个邻近模块复位,并破坏模块的连接器。
这个问题可通过热插拔控制器(图1)来解决,热插拔控制器能合理控制浪涌电流,确保安全上电间隔。上电后,热插拔控制器还能持续监控电源电流,在正常工作过程中避免短路和过流。
图1 热插拔应用框图
热插拔控制器
ADM1177热插拔控制器包括三个主要元件(图2):用作电源控制主开关的N沟道MOSFET、测量电流的检测电阻,以及热插拔控制器。热插拔控制器用于实现控制MOSFET导通电流的环路,其中包含一个电流检测放大器。
图2、ADM1177功能框图
热插拔控制器内部的电流检测放大器用于监控外部检测电阻上的电压降。这个小电压(通常为0~100 mV)必须被放大到可用的水平。ADM1177中放大器的增益为10,那么,举例来说,某个给定电流产生的100 mV电压降将被放大到1 V。这个电压将与固定或可变的 基准电压进行比较。如果使用1V的基准源,那么在检测电阻上产生 100 mV(±3%)以上电压的电流将导致比较器指示过流。因此,最大电流触发点主要取决于检测电阻、放大器增益,以及基准电压;检测电阻值决定了最大电流。定时器电路用于设定过流持续时间。
ADM1177 具有软启动功能,其中过流基准电压线性上升,而不是突然开启,这使得负载电流也以类似方式跟着变化。这可通过从内部电流源往外部电容(SS引脚)注入电流,令比较器的基准输入从0 V到1 V线性升高而实现。外部SS电容决定了上升的速度。如果需要,SS引脚也可以直接使用电压驱动,以设定最大电流限。
由 比较器及参考电路构成的开启电路用于使能器件。它精确设定了使能控制器所必须达到的电源电压。器件一旦使能,栅极就开始充电,这种电路所使用的N沟道MOSFET的栅极电压必须高于源极。为了在整个电源电压(VCC)范围内实现这个条件,热插拔控制器集成了一个电荷泵,能够将 GATE引脚的电压维持在比VCC还高10 V的水平。必要时,GATE引脚需要电荷泵上拉电流来使能MOSFET,并需要下拉电流来禁用MOSFET。较弱的下拉电流用于调节,较强的下拉电流则用于在短路情况下快速禁用MOSFET。
热插拔控制器的最后一个基本模块为定时器,它限制过流情况下电流的调
- 热插拔控制器和电源监控器 ADM1275(11-30)
- 分享:基于功放保护电路的设计分析与检测(12-09)
- 解析几种实用的直流开关电源的保护电路设计(01-23)
- TVS在数字移动电话电路中的设计与应用(04-24)
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...