微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > LTC3675 适用于靠单节锂离子电池运行的多轨应用

LTC3675 适用于靠单节锂离子电池运行的多轨应用

时间:05-04 来源:电子产品世界 点击:

LTC3675 是一个节省空间的单芯片电源解决方案,适用于靠单节锂离子电池运行的多轨应用。其 4mm x 7mm QFN 封装中含有两个 500mA 降压型稳压器、两个 1A 降压型稳压器、一个 1A 升压型稳压器、一个 1A 降压-升压型稳压器、一个能以高达 25mA 驱动两串 LED 的升压型 LED 驱动器、以及一个为内务处理微处理器供电的始终保持接通的 25mA LDO。所有稳压器都可通过 I2C 加以控制。图 1 所示是一个靠单节锂离子电池运行的 8 轨解决方案。  


图 1:通过单个 IC,可用锂离子电池提供 8 个电源轨,其中包括一个 LED 驱动器。  
?

开关稳压器的特点

LTC3675 中的所有电压稳压器都是内部补偿的单片同步稳压器。降压型稳压器和降压-升压型稳压器可以通过使能引脚或 I2C 启动,而升压型稳压器仅通过 I2C 启动。稳压器的反馈调节电压可通过 I2C 设定在 425mV 至 800mV 的范围内 (以 25mV 步进)。

每个稳压器都提供两种轻负载工作模式。降压型稳压器提供突发模式 (Burst Mode?) 工作以实现最高效率,降压型稳压器还提供脉冲跳跃模式以实现更加能可预测的 EMI。升压型和降压-升压型稳压器提供突发模式工作和 PWM 模式。每个稳压器的工作模式都可以通过 I2C 设定。

这些稳压器还具有可通过 I2C 在开关边沿设定转换率的控制,在开关边沿处,快速切换可产生更高的效率,而慢速切换可改善 EMI 性能。

并联降压型稳压器实现更强的负载电流能力

LTC3675 中任何两个连续编号的降压型稳压器都可并联连接,以产生具合并的负载电流能力的单个稳压器输出。例如,降压型稳压器 1 (能提供 1A 电流) 和稳压器 2 (能提供 1A) 并联起来,以提供高达 2A 负载电流的单个降压型稳压器。类似地,降压型稳压器 2 和稳压器 3 可以并联,以产生负载电流能力高达 1.5A 的单个降压型稳压器,降压型稳压器 3 和稳压器 4 可以并联,以产生负载电流能力高达 1A 的单个降压型稳压器。

当两个降压型稳压器并联时,号码较小的降压型稳压器充当主稳压器,以及控制号码较大的从属降压型稳压器的功率级。组合降压型稳压器的行为方式是通过主 (号码较小的) 稳压器设定的。为了将一个降压型稳压器配置为从属稳压器,其反馈引脚必须连接至 VIN,而且主稳压器和从属稳压器的开关节点必须一起短接到一个共用的电感器。从开关引脚到电感器,主稳压器和从属稳压器的走线阻抗必须保持相同,以在两个功率级中得到较好的电流分配。走线阻抗不同可能影响组合降压型稳压器的负载能力。

在图 2 所示应用中,降压型稳压器 1 和稳压器 2 并联,其中降压型稳压器 1 充当主稳压器,降压型稳压器 2 作为从属稳压器。  


图 2:并联降压型稳压器 1 和稳压器 2 可提高负载电流能力。利用通常用来驱动 LED 串的升压型稳压器产生 12V 输出。  
?

LED 驱动器的特点

LED 驱动器能驱动两个 LED 串,每串的 LED 数目可多达 10 个。LED 驱动器可以另行配置为高压升压型稳压器。

当为驱动两个 LED 串的驱动器配置时,LED 1 或 LED 2 引脚中电压较低的引脚是稳定点。在图 1 中,LED_FS 引脚上的 20k 电阻器将 LED 的满标度电流设定为 25mA。在这个电流值上,两个 LED 串之间实现了好于 1% 的匹配。自动分级电路允许 LED 电流以用户设定的速率改变。

就要求 LED 偏置到高于 25mA 电流的应用而言,通过 I2C 设定编程寄存器中的一个位,所设定的电流就可以加倍。就 20k LED_FS 电阻器而言,设定这个位,就设定了 50mA 的满标度电流。以这种模式使用时,输出电压限定为 20V。

LED 驱动器配置为高压升压型稳压器

利用 I2C 命令,可以将 LED 驱动器配置为以高压升压型稳压器工作。LED_OV 引脚充当反馈引脚。高达 40V 的输出电压可以用外部电阻器设定。在图 2 中,LED 驱动器配置为升压型稳压器,提供 12V 输出。为了保持稳定性,平均电感器电流不得超过 750mA。就一个 12V 输出而言,在整个输入电压范围内,可以提供高达 150mA 的负载电流。

  按钮接口和顺序加电

LTC3675 可以利用 ONB 引脚加电或断电。与 ONB、RSTB 和 WAKE 引脚有关的时序都由 CT 电容器设定。在以下讨论中,假定 CT 电容器的值是 0.01μF。

利用按钮接口和精确的使能门限,可以顺序启动稳压器。当所有稳压器都断开时,使能引脚门限为 650mV。一个稳压器一旦通过 I2C 或其使能引脚启动,那么其余使能引脚的门限就设定为精确的 400mV。这允许实现控制良好的顺序加电。

初始加电之后,如果没有稳压器尚未启动,那么就保持 ONB 引脚为低并持续 400ms,这将使 WAKE 引脚变高并持续

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top