微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 基于MC33067的LLC谐振全桥变换器的应用设计

基于MC33067的LLC谐振全桥变换器的应用设计

时间:05-07 来源:互联网 点击:


芯片根据反馈量大小进行PFM,其实质性机理就是通过改变流经RVFO的电流从而改变IROSC,最终改变内部压腔振荡器频率。在稳态情况下,芯片的脚3电位被内部三极管箝位在2.5 V,当脚6,7短接组成电压跟随器形式时,外部PI调节器的运算值即反馈值从脚8输入。由于误差放大器被软启动缓冲器箝位,当反馈量的值大于1.5 V时,才能进入线性调节区域,故外部反馈值的范围在1.5~2.5 V之间。综上所述,利用MC33067所搭建的频率调制控制原理图如图4所示。

4 试验结果
基于以上设计流程搭建了一个2 kW功率等级的LLC谐振全桥变换器的主电路和控制电路,测试了大量的关键点波形。
图5a示出390 V直流输入,满载功率2 kW时初级VT3的驱动电压波形ugsVT3和VT4漏源电压波形udsVT4。可见,udsVT4在ugsVT3由低电平切换为高电平之前就已经建立起母线电压,说明VT3工作在ZVS状态。图5b示出390 V输入,满载功率2 kW时Lm两端电压波形uab和次级整流输出电流波形iud。

可见,初级电压关断时刻,次级电流刚好到零,无反向恢复,处于最佳ZCS状态。

图6为390 V输入,48 V输出时不同输出功率下输出电流在10 A,20 A,30 A,40 A,50 A时对应的整机效率曲线。可见,在给定输入电压情况下,输出全负载范围内变换器的效率都比较高。

5 结论
在此详细地介绍了LLC谐振全桥变换器的基本工作机理及主电路谐振腔的设计方法,同时介绍了基于MC33067的频率调制电路,并在此基础上设计了一款输出48 V,2 kW功率等级的LLC谐振全桥变换器。试验结果表明,所设计的LLC谐振全桥变换器在额定输入电压条件下,输出全负载范围内都实现了初级开关管的ZVS,次级整流二极管的ZCS,并得到了较高效率,符合电源高功率密度和高效的发展要求,具有广阔的应用前景。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top