微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 电源开关设计基础

电源开关设计基础

时间:05-07 来源:互联网 点击:

ANK 的一些器件来说,最大平均功耗如公式 4 所示。

对于那些没有自动重启环路(如 TPS22944 等)的器件来说,输出短路会使器件工作在恒流状态下,从而保证在热关断启用以前实现极端情况功耗。这样,只要导通引脚有效且出现短路,它便在进出热关断之间不停地循环。

市场上有一些电流限制开关,需要考虑的两个主要特性是电流限制最小值(固定电流限制或利用外部电阻编程),以及电流限制精度和响应时间。大多数应用中,电流限制精度并不是一个关键问题,因为器件用作一个断路器(即出现短路时关闭开关)。但是,如 USB 电流限制等一些应用的精度就显得很重要,因为开关是用作一个恒流源。

对于一些要开关大电流或承受过电流的一些应用来说,我们建议您选择具有某种热保护特性的器件。当发现器件温度过高时,大多数器件都会启用热关断,关闭 FET 来保护器件自身,以避免遭受任何潜在的热损害。

除强制短路保护的电流限制(或者过电流保护—OCP)以外,还可以考虑如反向电流阻断等其他一些保护特性。

设计人员尝试设计一种电源选择器 (ORing),或者实现某种负载分配时,反向电流阻断(也称作反向电压保护)则为必需的。

图 1 显示了一个通过两个潜在电源(即 DC 输入和电池)为负载供电的电源开关配置实例:

图 1 双源电源选择器

对于没有反向电压保护的器件来说,直通 FET 的输入电压保持在其输出电压以上很重要。否则,输入将会通过 FET 主体二极管被钳位控制,从而使大电流从输出流至输入。

在图 1 实例中,如果电池为一块 4.2V(最大)的锂离子 (Li-Ion) 电池,启用 DC输入,并且电压为 5.0V,则潜在大电流将从负载流至电池——我们当然不希望看到这种结果!

一种有效的解决方案是使用一款具有反向电压保护特性的器件。反向电流保护一般可以通过使用背靠背 FET,或者在探测到反向电压状态时开关 PMOS FET 的背栅来实现。您将会研究反向电压比较器跳变点(VOUT – VIN值,即启用反向电流特性的阈值),以及从反向电压状态到 MOSFET 关闭的时间。

可有效用于某些应用的另外一种保护是过电压保护 (OVP)。该特性在开关出现过电压时,保护开关和系统。例如,它可以有效地用于一些 USB 应用或者电池应用中。

浪涌电流管理

电源开关的另一种常见用法是对系统启动时的浪涌电流进行管理。如果开关在不受控的情况下开启,则会形成巨大的浪涌电流,可导致开关输入电源轨压降。其最终会影响系统的整体功能。

对大容量输出电容充电时,浪涌电流会很大,需要对其进行控制和/或限制。这种浪涌电流可由公式 5 计算得到:

例如, 和 1?S 升压时间的情况下,浪涌电流可以高达 3A。

避免出现这种浪涌电流的一种简单方法是减慢开关的升压时间。这样便可缓慢地对输出电容充电,并降低电流峰值。在公式 5 的实例中,200?S 的升压时间会导致 15mA 的浪涌电流,这是可以接受的。

一些情况下,您可能想对一些超大容量电容(数百 ?F)充电。通常建议选择非常长的升压时间,但是您也可以选择一种具有高电流限制的开关。器件将会在加电时进行电流限制,同时电容将在电流限制值下获得充电,其为电源开关的最大功耗能力。

系统互操作性

任何情况下,在选择电源开关时,都需要认真地考虑系统互操作性问题。例如,便携式应用中使用电源开关启用和关闭负载来优化功耗时,开关的控制输入必须与通用、低电压(1.8-V)兼容,GPIO 至关重要。另外,当关闭开关时,请确保开关的浮动输出不影响系统性能。因此,一些用户可能会在关闭时利用一个额外晶体管将电源开关输出紧密接地,或者使用一个集成这种下拉接地(如 TPS22902)的集成器件。

另一个重要的检查点是设计稳定系统所使用的输入和输出电容。尽管通常不要求一个输入电容来稳定一些市售的电源开关,但在输入电源连接一个 0.1uF 到 1uF 的低等效串联电阻 (ESR) 电容器时,却被认为是一种较好的模拟设计方法。该电容可应对电抗性输入源,并改善瞬态响应、噪声及纹波抑制性能。根据开关的负载,您可能会考虑在开关的输出端添加一些额外的储能电容。如果开关没有反向电流阻断,则强烈建议使用大于输出电容的输入电容,否则输入将会通过 FET 主体二极管被钳位控制,从而使强大的电流从输出端流到输入端。

参考文献

作者简介

Philippe Pichot 现主要负责 TI 负载开关产品线战略市场营销工作。Philippe 毕业于法国北部高等电子学院 (Institut Superieur D’Electronique du Nord (ISEN) in Lille, France),获电子工程硕士学位。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top