5V高电压锂离子电池阴极材料研究进展
as novel 5 V cathode material[J]. Journal of Power Sources, 2007. 174(2): p. 1113-1116. [23] Sun, Y.K., et al., Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures[J]. Electrochemistry Communications, 2002. 4(4): p. 344-348. [24] Sun, Y.K., C.S. Yoon, and I.H. Oh, Surface structural change of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode materials at elevated temperatures[J]. Electrochimica Acta, 2003. 48(5): p. 503-506. [25] Wu, H.M., et al., Surface modification of LiNi(0.5)Mn(1.5)O(4) by ZrP(2)O(7) and ZrO(2) for lithium-ion batteries[J]. Journal of Power Sources, 2010. 195(9): p. 2909-2913. [26] Liu, J. and A. Manthiram, Understanding the Improvement in the Electrochemical Properties of Surface Modified 5 V LiMn(1.42)Ni(0.42)Co(0.16)O(4) Spinel Cathodes in Lithium-ion Cells[J]. Chemistry of Materials, 2009. 21(8): p. 1695-1707. [27] Kobayashi, Y., et al., 5 V class all-solid-state composite lithium battery with Li(3)PO(4) coated LiNi(0.5)Mn(1.5)O(4)[J]. Journal of the Electrochemical Society, 2003. 150(12): p. A1577-A1582. [28] Minakshi, M., et al., Synthesis and characterization of olivine LiNiPO(4) for aqueous rechargeable battery[J]. Electrochimica Acta, 2011. 56(11): p. 4356-4360. [29] Sun, Q., J.Y. Luo, and Z.W. Fu, Facile Synthesis and Electrochemical Properties of Carbon-Coated LiCoPO(4) Submicron Particles as Positive Materials for Lithium Ion Batteries[J]. Electrochemical and Solid State Letters, 2011. 14(10): p. A151-A153. [30] Li, H.H., et al., Fast synthesis of core-shell LiCoPO(4)/C nanocomposite via microwave heating and its electrochemical Li intercalation performances[J]. Electrochemistry Communications, 2009. 11(1): p. 95-98. [31] Wang, F., et al., Novel hedgehog-like 5 V LiCoPO(4) positive electrode material for rechargeable lithium battery[J]. Journal of Power Sources, 2011. 196(10): p. 4806-4810. [32] Liu, J., et al., Spherical nanoporous LiCoPO(4)/C composites as high performance cathode materials for rechargeable lithium-ion batteries[J]. Journal of Materials Chemistry, 2011. 21(27): p. 9984-9987. [33] Jang, I.C., et al., LiFePO(4) modified Li(1.02)(Co(0.9)Fe(0.1))(0.98)PO(4) cathodes with improved lithium storage properties[J]. Journal of Materials Chemistry, 2011. 21(18): p. 6510-6514. [34] Allen, J.L., T.R. Jow, and J. Wolfenstine, Improved cycle life of Fe-substituted LiCoPO(4)[J]. Journal of Power Sources, 2011. 196(20): p. 8656-8661. [35] Sharabi, R., et al., Significantly improved cycling performance of LiCoPO(4) cathodes[J]. Electrochemistry Communications, 2011. 13(8): p. 800-802. [36] Xie, J., et al., Li-ion diffusion kinetics in LiCoPO(4) thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering[J]. Journal of Power Sources, 2009. 192(2): p. 689-692.■
- 详解三维石墨烯传感器(12-07)
- 探讨功率因数校正技术PFC中的电感材料选择(10-13)
- 八大优点,三元材料为正极的动力锂离子电池(10-05)
- 半导体材料知多少?SiC器件与Si器件性能比较(09-27)
- 超微晶磁芯在开关电源中的应用(01-18)
- 电池材料制约电池容量(01-13)
