数字控制提高无桥接PFC拓扑结构性能
7 无测量 VIN 延迟 图 8 测量 VIN 延迟 300us。 图 9 测量 VIN 延迟 500us。非线性控制相比电流环路,电压环路控制复杂度更低。数字实施时,输出电压 VO 通过一个 ADC 检测,然后同电压基准比较。 我们可以使用一个简单的比例积分 (PI) 控制器来关闭该环路。 方程式 (4)其中,U 为控制输出,Kp 和 Ki 分别为比例项和积分调节增益。E[n] 为 DC 输出电压误差采样。如前所述,使用数字控制的诸多好处之一是它能够实现非线性控制。我们使用非线性 PI 控制的目的便是提高瞬态响应。图 10 显示了非线性 PI 控制的一个实例。误差更大时(通过出现在瞬态下),使用更大的 Kp。误差超出设置限制时这样会加速环路响应,同时恢复时间缩短。使用积分器时,又是另外一种情况。众所周知,积分器用于消除稳态误差。但是,它通常会引起饱和问题,并且其 90 度相位滞后也会影响系统稳定性。正因如此,我们使用了一个非线性积分调节增益[5](图 10)。误差超出一定程度时,积分调节增益Ki减小,以防止出现饱和、过冲和不稳定性等问题。图 10 非线性PI控制数字电压环路控制的另一个优点被称为积分抗饱和。它一般出现在 AC 压降状态下。当 AC 压降出现,并且下游负载继续吸取电流时,DC 输出电压开始下降,但是 PFC 控制环路仍然尝试调节其输出。因此,积分器积聚,并可能出现饱和,这种情况被称为积分器饱和。一旦AC恢复,饱和积分器便可能会引起 DC 输出电压过冲。若想防止出现这种情况,则一旦探测到 AC 恢复,固件就重设积分器,同时 DC 输出达到其调节点。数字控制器还可以做得更多,例如:频率抖动、系统监控、通信等,并且可以为无桥接 PFC提供灵活的控制、更高的集成度以及更高的性能。在一些高端的 AC/DC 设计中,现在越来越多的设计正在使用数字控制器。
拓扑 结构 性能 PFC 桥接 控制 提高 数字 相关文章:
- 六种基本DC/DC变换器拓扑结构总结(12-12)
- 一网打尽开关电源拓扑结构的优缺点(12-07)
- 帮你快速入门拓扑结构之正激(12-07)
- 开关电源拓扑结构优缺点(12-05)
- 两级拓扑结构的离网型光伏逆变器设计(06-28)
- 完美解读最新独立太阳能充放电拓扑电路(02-09)