一种电源老化节能方案
1引言
通常情况下,设备的例行老化是让设备接上模拟负载进行模拟工作,当然能量就消耗在模拟负载上,这种消耗通常没有得到最佳的利用。本文根据电源转换器是将电能转换为不同等级电能的特点,提出通过能量反馈实现大部分能量的循环利用,从而实现节能的目的。如何节能,减少能源消耗是人们一直追求的目标,在建设节约型社会的今天,节能降耗的意义更显重要。
2工作原理
电源转换器能将电能加工为需要的电能,它的例行老化使用只要在电源转换器的输出端连接合适的电阻负载或等效阻抗的用电设备让其保证一定的负荷工作即可。如图1所示:输入电压Vin被电源转换器转换为Vout加在电阻负载上,在例行工作时,电源转换器消耗功率(未计算转换过程损耗)为 Po=Vout2 /R1 。
图1 转换器工作示意图
这种情况下,电能消耗没有得到任何利用,就直接转化为热能从电阻负载上散发出去,是对电能的一种严重浪费。
要实现节能循环利用,主要考虑将消耗在电阻负载上的能量更加合理的利用。如果能将输出电压Vout再还原为输入电压Vin,则输出电能转换为输入的电能,便可以实现电能的循环利用,如图2所示:将原有转换器的电阻负载R1用等效输入阻抗的转换器2取代,转换器2的输出接转换器1的输入。则与R1等效输入阻抗的转换器2从转换器1输出端消耗的能量被转换到转换器1的输入端,再经转换器1又到转换器2的输入端,实现了能量的循环利用。如果在理想情况下,没有转换损耗,则系统可以自循环工作。当然这是无法实现的,所以在能量分析时,要引入转换过程的消耗。
对以上两种工作模式下的能量消耗做如下分析:
第一种工作模式是在没有能量循环的情况下,Pi为转换器的输入能量,Pw为电源转换器转换过程中的消耗能量,Po为转换器消耗在电阻负载上的输出能量。假定转换器的转换效率为80%时,于是可设转换器在转换过程消耗的能量为Pw=25% Po,则整体总能量消耗也就是转换器的输入能量Pi=Po+Pw=1.25Po。
第二种工作模式是引入能量反馈的情况下,能量转换如图3所示:转换器1为需要例行使用的电源转换器,转换器2为用于能量反馈的转换器,Pi为系统外给转换器1的输入能量,Pw为转换器1转换过程中的消耗能量,Po为例行使用电源转换器1正常应输出的能量,同时也是转换器2的输入能量;Pwf为用于能量反馈的转换器2转换过程中的消耗能量,Pf为转换器2反馈给电源转换器1的能量。
图3 有反馈模式的能量转换图
假设电源转换器1和转换器2的转换效率都为80%,则转换器1转换过程消耗能量同模式1为:Pw=25%Po,由转换器的转换效率得转换器2转换过程的消耗能量:Pwf=20%Po,根据能量守衡定律,则整体总消耗能量:Pi=Pw+Pwf=25%Po+20%Po=45%Po。
从以上两种模式情况下,能量消耗分析可以得出结论,采用具有能量反馈的工作模式进行例行老化使用时,所消耗的能量只要工作能量的0.45,相比较没有能量反馈的例行老化使用,总消耗能量为工作能量的1.25倍.因此具有能量反馈的例行老化使用模式节约能源。
3系统实现
从以上两种工作模式分析所得,可以利用能量反馈形成能量循环系统,减少能量消耗,系统工作可由图4示意,包括三个部分:
图4 能量反馈系统实现示意图
a) 电源部分,为系统提供外在激励源;
b) 转换器部分为需要例行老化的电源设备,将输入电源电压转换为需要输出电压;
c) 能量反馈部分可将转换器的输出电压转换为转换器的输入电压。
能量反馈部分和需要例行试用的转换器组成一个能量循环系统,在外电源的激励下,系统保持额定功率运转。由功率公式P=U*I,U由例行老化的电源转换器稳定,要保证该额定功率,就是保证输出电流I,即能量反馈部分设计成恒流电路,所以系统在额定功率下,保证能量循环稳定工作的等效控制量为需要例行使用的电能转换器的输出电流。
在能量反馈部分就要能实现上述要求,保证稳定的电能转换器的输出电流,采用电流传感器检测电能转换器的输出电流,同时反馈部分采用反馈电压与输出控制电流之间成反比系数关系即Uf∝K/Io,为便于分析,设电源电压Ui为稳定值。当输出电流较小时,通过调节反馈电压,使其变大,则反馈电压与输入的电压差△U=Uf-Ui变大, 相应的由反馈电压流向输入电压的电流加大,造成相应的反馈功率加大;当输出电流较大时,通过调节反馈电压,使Uf变小,则反馈电压与输入的电压差△U变小,相应的由反馈电压流向输入电压的电流减小,造成循环的功率减小;整个过程维持负反馈控制,最终达到动态平衡,维持设定的额定功率。
4反馈设计
从以上能量反馈系统工作分析可知,能量反馈部分为系统稳定工作提
- ITECH 电子负载为电池脉冲充电测试提供专业方案(06-06)
- 大联大控股世平推出高性能电机控制解决方案(04-11)
- “可持续性”模块电源解决方案(01-26)
- 实际应用变流方案 单片机在线UPS设计广为流传(01-16)
- 反激式电源中的常见噪声来源及可操作的解决方案(12-27)
- 浅谈高压变频器维护方案(12-14)