基于自适应提升小波变换的电能质量检测节点
随着新型电网技术的发展以及用户对电能质量PQ(Power Quality)要求的提高,电能质量问题受到越来越多的关注。要想治理电能质量问题,电能质量扰动信号的检测和分类是很重要的一个基础环节。
国内现有的电能质量检测系统,其数据采集单元同控制中心之间的数据通信大都是通过有线方式进行的,底层通信大都采用现场总线(如RS485、CAN总线等),远程通信方式有光纤、电力载波、公网、有线电缆等[3],给线路铺设、设备检修等工作带来很大不便,建设成本和工程居高不下。无线传感网络的出现很好地解决了有线网络存在的问题,它具有很大的灵活性,只需要在电力检测区域合理地放置无线传感器节点即可检测电力运行状态,省去了布线环节,节约大量的成本和精力[4]。本文在研究无线传感网络的基础上,提出了一种基于自适应提升小波变换的电能质量检测节点设计方案,实现了监控中心对检测节点电能质量远程实时、准确的检测和识别,为电力系统的集中管护和检修提供依据。
1 系统总体设计
由电力系统的运行环境和特点,检测到电能质量检测PQD(Power Quality Detection)信号不可避免地会包含一些噪声信号。噪声信号的存在会降低检测的准确性,在噪声信号强的场合,甚至会造成检测的失效。为此,需要对PQD信号进行先去噪再分类。系统总体设计思路是将数据采集单元采集到的数据进行自适应提升小波去噪处理,提取PQD信号的特征矢量,再通过支持向量机进行电能质量扰动类型的识别,最后通过无线收发模块将扰动类型、扰动波形发送给WSN网关,如图1所示。
总的来说系统可分为以下各个功能模块:DSP和ARM最小系统模块、数据采集模块、键盘和液晶显示模块、无线收发模块和电源模块,如图2所示。
2 PQD去噪及识别原理
小波分析方法具有良好的时、频局域性,是电能质量检测中一个有力的工具,被广泛应用于电能质量信号去噪和特征向量的提取。但小波变换的算法比较复杂,实现起来需要占用较多的系统资源,运算速度比较慢,不能很好地满足电能质量信号检测实时性要求。基于提升格式的第二代小波变换改进了传统的小波变换算法,不依赖于傅里叶变换,具有运算速度快、完全本位计算、变换后系数与原信号长度相同等特点,适用于信号的实时处理。提升小波分解和重构如图3(a)、图3(b)所示。
一次简单的小波提升分解包括分裂(split)、预测(prediction)和更新(update)三个步骤。dj[2n+1]和sj[2n]分别为第j层的高频细节分量和低频近似分量。对低频近似分量的递归进行提升小波分解,从而创建了多分辨率分解的多级变换。
小波重构过程是分解过程的逆运算,与分解过程具有相同的计算复杂性,能大大提高序列分解和重构的运算速度,改善了小波变换的实时性,降低了算法硬件实现的复杂性。
自适应方法完全从信号的角度出发,根据信号的特点自适应选择不同的滤波器。本文将自适应算法应用于更新算子和预测算子的设计中,实现了双自适应提升小波变换,并且采用先更新后预测的方法,预测不会影响更新,提高算法的准确性。
电力系统的噪声一般是高频的白噪声,采用加权阈值法对小波变换的高频细节分量进行处理,得到去噪后的高频细节分量,即:
其中,f(t)为待小波分解信号,cj(k)为小波分解第j层的近似系数,dj(k)为小波分解第j层的细节系数。近似系数中所含能量为基波能量,而细节系数中所含能量是暂态能量。
本文在参考文献[6]的基础上,根据处理后的高频细节分量和低频近似分量,取小波各层暂态能量差和扰动持续时间为特征向量,用改进支持向量机进行PQD的识别。选择高斯径向基函数为SVM的内核函数,即:
3 系统硬件设计
3.1 DSP和ARM核心电路设计
本文采用ARM+DSP的主从式并行处理系统,把基于支持向量机的扰动类型识别、人机交互功能和无线通信功能集中在ARM子系统中,由主机完成对一切外设的控制。利用DSP的快速数据处理能力完成对三相电压信号、三相电流信号的采集、小波去噪以及小波变换提取特征向量。ARM和DSP之间的数据通信通过一个双口RAM来实现。
DSP芯片选用TMS320VC5402芯片,该芯片是TI公司针对低功耗、高性能需要而专门设计的定点DSP芯片;ARM芯片选择Samsung公司的ARM9系列芯片S3C2420,结合相应的外设构成一个完整的ARM应用系统,具有体积小、功耗低、相对处理能力强等特点,能够装载和运行操作系统,实现了多任务调度,提高了PQD识别、无线通信的可靠性和快速性。
3.2 数据采集单元设计
数据采集单元设计方案是:采用小型交流互感器,将100 V、5 A的一次电压、电流信号转换成+5 V~-5 V之间的弱电信号,并通过高精度的运算放大器进行信号调理,经过低通滤波后,传送给A/D转换电路。为了准确快速地反映出电网的电能质量,要求该部分电路必须保证很高的线性度。本装置选用了东升公司的超小型、高精密电流和电压变换器。这种变换器线性度为0.1%,补偿后相移小于70′,隔离电压高达2 500 V,并且体积小、重量轻,可直接焊在印刷线路板上。选用ADS8346芯片完成模拟量到数字量的转换。ADS8346是TI公司专为高速同步数据采集设计的一款16位A/D转换芯片,由3个转换速率为250 kS/s的ADC构成,每个ADC有2个模拟输入通道,可同时实现6个通道的模拟量转换。
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)