微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 新型半主动激光制导实物仿真系统设计与实现

新型半主动激光制导实物仿真系统设计与实现

时间:07-05 来源:互联网 点击:

摘要:设计并实现了一种激光半主动制导实物仿真系统,系统主要包括光电探测、信号处理和伺服部分。介绍了系统的工作原理以及主要电路的设计。该系统体积小,操作方便,控制灵活等优点。实际应用结果表明,该仿真系统对模拟激光目标的跟踪稳定,具有良好的实时性和较强的实用性。
关键词:激光制导;半实物仿真;峰值保持;电路

随着以计算机为代表的信息化技术的飞速发展,半实物仿真技术在国内外的航空航天、通信等众多军用和民用领域都发挥着重要作用,具有费用低,开发周期短等特点。激光半主动制导半实物仿真系统在激光制导武器的研究、试验、作战仿真和教学训练中有重要作用。为测试激光制导干扰设备对激光制导的干扰效果,开发研制了该系统。

1 系统组成及工作原理
该仿真系统主要由光学系统、光电探测器、信号处理电路和伺服系统组成。系统的工作原理是这样的:用NdYAG模拟激光源发射经过编码的激光束,经过滤光片照射到四象限光电探测器,光电探测器将接收到的激光光信号转变为电信号输出给后续处理电路。光电探测器输出的电信号进过自适应前置放大滤波电路、峰值保持电路和AD转换电路,进入微处理器,通过光斑检测四元定位算法,解算出目标光斑偏离中心的偏差即偏离目标光源中心点的脱靶量,根据脱靶量形成对伺服系统的控制指令,二维转台伺服控制系统根据控制指令调整导引头的姿态,稳定跟踪模拟目标光源,原理流程框图如图1所示。

系统光电探测器组件采用中国电子工业集团公司第四十四所生产的GD4311Y四象限光电探测器。它具有可控增益、响应速度快、盲区小、噪声低;均匀性、对称性好等特点,在激光定位、激光制导等方面应用广泛。它的光敏尺寸为φ8 mm,响应波长范围为850~1 064 nm。为了增强探测效果,滤除背景和噪声的干扰,在探测器前加装了滤光片,对进入到探测器的激光进行了过滤。二维转台伺服系统为双自由度高精度数字云台PTO1502,前后俯仰72°,水平旋转-157°~157°,RS485通信接口,24 V/3 A直流供电,70多条默认缺省指令集,指令响应时间12ms。

2 硬件电路设计
2.1 前置放大电路
GD4311Y四象限探测器电路如图2所示,其中U1为GD43311Y探测器,D1、D2、D3、D4为四象限电流信号输出,+80 V的作用是给探测器提供的典型偏置电压,+2 V的作用是给探测器提供增益控制电压,+5 V的作用是给探测器提供的正电源,为了保证电源稳定,在正电源与地之间必须接入100 pF的电容。


四象限探测器的作用是将光信号转变成了微弱的电信号,其输出相当于一个高速脉冲电流源。前置放大电路采用跨阻放大器对探测器输出的微弱电信号进行放大,并将电流信号转为电压信号输出,电路如图3所示。

跨阻放大器选用AD8007低失真的高速放大器,650 MHz带宽。D1为探测器输出,R1为200 Ω限流电阻,流入跨阻放大器:±5 V作用是提供工作电压:F1为经过放大的输出信号。
2.2 峰值保持电路
在将信号输入到AD转换电路之前,由于采集到的信号频率高,即使是高速率的AD也无法在短时间内完成数模转换,需要将采集信号的峰值保持一段时间。而峰值保持电路的作用就是将采集到的信号峰值保持下来,供ADC采样所用。系统采用具有响应速度快、动态范围大和误差小等优点的跨导型峰值保持电路,电路如图4所示。

跨导放大器(WTA)选用Maxim公司的MAX436芯片。MAX436无需另外设置静态工作点,是高速、宽带跨导型放大器。其反向输入端电阻很大,反馈回路从图中的N1处引入,这样减少了电压缓冲器的延时。图中U27、U28信号缓冲器为MAX4201开环单缓冲器。它们的作用是对信号进行缓冲,提高驱动能力和抗干扰能力。U28的输出即为峰值保持结果,通过接插件与后续采样保持器电路连接。电阻R18用于设置MAX436的跨导增益,当R12=50 Ω时,跨导增益为160 ms。电阻R19用于设置MAX436的最大输出电流,当R19=5.9 kΩ时,最大输出电流为20 mA。保持电容取100 pF,反馈回路直接从U28的输出端接入。
图中N1为放电回路的控制端,低电平使放电回路放电,由单片机输出使能74HC4066模拟开关芯片控制。Q3在这里起到单向通道的作用,确保放电回路正常放电。当峰值保持器采集完成,单片机输出高电平放电使能信号,峰值保持电路开始放电。放电回路的目的是对保持电容进行复位,以便于下一次的峰值保持。
2.3 峰值检测与AD转换电路
峰值检测电路作用是将放大后的信号进行峰值时刻鉴别检测,在信号达到峰值前输出触发信号,该信号输出到峰值保持电路。系统采用LM361芯片设计峰值检测电路,选用AD7994BRU-0为AD转换芯片,电路如图5和图6所示。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top