微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 工程师不可不知的开关电源关键设计(三)

工程师不可不知的开关电源关键设计(三)

时间:06-19 来源:互联网 点击:

有人提出一种无限流电阻的上电浪涌电流抑制电路如图7(a)所示,其上电电流波形如图7(b)所示,其思路是将电路设计成线形恒流电路。实际电路会由于两极放大的高增益而出现自激振荡现象,但不影响电路工作。从原理上讲,这种电路是可行的,但在使用时则有如下问题难以解决:如220V输入的400W开关电源的上电电流至少需要达到4A,如上电时刚好是电网电压峰值,则电路将承受4×220×=1248W的功率。不仅远超出IRF840的125W额定耗散功率,也远超出IRFP450及IRFP460的150W额定耗散功率,即使是APT的线性MOSFET也只有450W的额定耗散功率。因此,如采用IRF840或IRFP450的结果是,MOSFET仅能承受有限次数的上电过程便可能被热击穿,而且从成本上看,IRF840的价格可以接受,而IRFP450及IRFP460则难以接受,APT的线性MOSFET更不可能接受。

  

欲真正实现无限流电阻的上电浪涌电流抑制模块,需解决功率器件在上电过程的功率损耗问题。作者推出的另一种上电浪涌电流抑制模块的基本思想是,使功率器件工作在开关状态,从而解决了功率器件上电过程中的高功率损耗问题,而且电路简单。电路如图8(a)和图8(b)所示,上电电流波形如图8(c)所示。

  

  3.3 测试结果

A模块在400W开关电源中应用时,外壳温升不大于40℃,允许间隔20ms的频繁重复上电,最大峰值电流不大于20A,外形尺寸25mm×20mm×11mm或  35mm×25mm×11mm。

B模块和C模块用于800W的额定温升不大于40℃,重复上电时间间隔不限,上电峰值电流为正常工作时峰值电流的3~5倍,外形尺寸35mm×30mm×11mm或者50mm×30mm×12mm。

模块的铝基板面贴在散热器上,模块温度不高于散热器5℃。

  4 结语

开关电源上电浪涌电流抑制模块的问世,由于其外接电路简单,体积小给开关电源设计者带来了极大方便,特别是无限流电阻方案,国内外尚未见到相关报道。同时作者也将推出其它冲击负载(如交流电机及各种灯类等)的上电浪涌电流抑制模块。

  六、开关电源中电磁干扰的抑制方法

  引言

随着开关电源技术的不断发展和日趋成熟,各个应用领域对开关电源的需求也不断增长,但是,开关电源存在严重的电磁干扰()问题。它不仅对电网造成污染,直接影响到其它用电电器的正常工作,而且作为辐射干扰闯入空间,对空间也造成电磁污染。于是便产生了开关电源的电磁兼容(EMC)问题。电磁兼容是指设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。

开关电源的电磁干扰可分为传导干扰和辐射干扰两大类。传导干扰通过交流电源传播,频率低于30 MHz。辐射干扰通过空气传播,频率在30MHz以上。

本文针对一种桌面式180W塑壳开关电源(负载是12V/15A的半导体制冷冰箱,电源外形大小205mm×90mm×62mm)所存在的电磁干扰超标问题,从原理上进行了分析,并探讨了解决方案。

1 180 W开关电源的电路结构分析与电磁干扰测试

  1.1 主电路与结构布局分析

该开关电源的电路原理如图1所示。

  

电容滤波整流器功率因数低,整流二极管导通时间较短,滤波电容充电电流瞬时值的峰值大,整流后的电流波形为脉动状,产生高的谐波电流。

半桥电路中高频导通和截止的S1、S2、D3、D4和变压器T1是开关电源的主要骚扰源,产生高频高压的尖峰谐波振荡,该谐波振荡产生的高次谐波,通过开关管与散热器问的分布电容传入内部电路或通过散热器及变压器向空间辐射。

该开关电源的内部布局如图2所示,左边是交流电源输入和直流输出,靠左边上下两侧留有通风孔,风机在右边,采用向外抽风方式散热,保证塑壳内的热量及时排出,避免热量在塑壳内积聚。该布局的优点是通风路比较通畅,但也存在缺点—输入输出接口安装得较近,在它们之间容易产生空间耦合,形成辐射骚扰。

  

  1.2 电磁干扰测试

表l所列为测得的7~21次谐波电流的数值,其中11、15、17次谐波电流都超标。

  

辐射骚扰预测结果在30~50MHz和100MHz处超出限值,如图4所示。

  

 2 电磁干扰的抑制

  2.1 谐波电流的抑制

采用功率因数校正可以解决谐波电流超标的问题。有源功率因数校正采用Boost升压PFC电路,功率因数提高到O.99以上,使得谐波电流很小,但电路复杂,成本也不低,而且电路中的开关管和高压整流二极管的开关噪声将成为新的骚扰源,使整机的EMI达标增加了难度。

考虑到在交流输入电压(AC 220~250V)范围内,满足电压调整率情况下,适当减小滤波电容,输入串联电阻可以在一定程度上降低滤波电容充电电流瞬时值的峰值,满足谐波电流限值,且功率损耗在

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top