高压元器件整合简化PoE用电装置设计[
自从IEEE StdTM 802.3af以太网络供电 (Power-over-Ethernet,PoE)标准于2003年6月通过后,已有数百万台具备PoE功能的VoIP电话、无线接入点(WAP)和安全摄影机在世界各地销售。PoE能够方便地同时提供数据与电源功能,所以许多应用现在都开始内置这项功能,例如销售点终端装置(POS)、网络传感器和楼宇自动化。以太网络供电设备(PSE)和用电装置 (PD)等PoE产品的出货量预计到2008年将超过一亿。
把多颗分立的高压元器件整合在一起有助于发展更小、更精简和成本更低的PoE用电装置解决方案。例如PWM开关稳压器的桥式二极管、瞬时电压抑制器(TVS)和功率MOSFET就是很好的整合目标,只不过由于高压元器件的整合极为复杂,厂商通常不会把它们集成到同一颗芯片。本文将介绍把这些元器件整合到PoE用电装置接口和电源管理控制器时所需考虑的系统层级需求以及它们可能带来的好处。
现有解决方案
PoE产品的用电装置接口已从早期的分立式设计演进到现在的单芯片解决方案,这类解决方案整合了IEEE 802.3af标准所要求的侦测、分类和热交换功能以及直流电源转换所需的脉冲宽度调制器(PWM)。图1就是典型的解决方案,其中包括典型隔离式电源所需的外部元器件。
图1 传统的PoE用电装置接口与交换式稳压器(未整合高压元器件)
返驰式稳压器架构的应用很广泛,因为它能在PSE设备和PD装置的电源供应之间提供电气隔离,同时支持VoIP电话和无线接入点等目前两种主要PoE应用的2~10W电源需求。许多PD应用需要多个稳压电源,因此它们常利用多绕组变压器、LDO或后降压稳压器产生电压给PD装置的无线电、处理器和其他子系统。
典型的解决方案约需35~50颗外接元器件。其中虽有很多是较低价的电阻和电容,但仍有大约8~10颗的高电压或大电流有源元器件会增加电路板面积和用料成本。这些元器件是:
● 输入电源端的桥式二极管,它们可能包含6~8颗分立二极管或两个整合式全桥整流器 (图1的B1和B2)
● 瞬时电压抑制器 (TVS),通常是一颗SMAJ58A或类似的齐纳箝位二极管(图1中的D1)
● 开关稳压器的功率MOSFET,随着PWM架构不同可能有1或2颗元器件(图1中的M1)
把高压元器件整合到PD装置接口不仅使得PD装置的设计更简单,还能将外部元器件减至最少。我们只要分析这三种元器件在PD装置的工作方式、相关的IEEE StdTM 802.3af规格 (它们会决定所需的效能)以及哪些工艺技术可以整合这些高电压功能,就能了解这种做法的优点。
输入端桥式二极管与浪涌抑制箝位
桥式二极管和浪涌抑制器(TVS)通常是分立的外接元器件,负责在严苛的PoE操作环境中提供重要的电路保护功能。桥式二极管的功能虽然相当直接,但当它用于PD装置接口的输入电源端时却须提供下列重要功能。
● 无论缆线的电源极性为何,都能高效率将PSE设备的电源连接到PD装置接口。
● 安全处理IEEE StdTMn 802.3af标准所定义的整个操作电压和电流范围。
● 在TVS二极管的配合下,承受IEC-60060所定义或缆线放电所造成的破坏性瞬时浪涌。
从操作电压范围的角度来看,桥式二极管只需将44~57V的直流电源从PSE设备连接到PD装置接口。对于中间抽头接点(CT1/CT2),802.3af规格则要求PD装置必须接受任何一种极性的电源。这项要求使得CT1和CT2接脚必须使用4颗二极管组成的全桥式电路,它们通常会连接到10/100BASE-T应用的数据线路对。
IEEE规格对PSE设备提供给备用线路对(SP1/SP2)的电压极性有着明确规定,因此它就技术而言只需使用半桥式电路。然而考虑到静态放电、缆线放电或雷电诱导产生的浪涌都可能造成瞬时现象,所以备用线路对的输入端最好还是使用全桥式电路。如果浪涌进入未使用全桥式电路的备用线路对,就可能在接口产生1kV以上的浪涌电压而导致电路崩溃和二极管毁损。全桥式二极管电路还能将任何输入(CT1/CT2/SP1/SP2)连接到以太网络变压器或RJ-45的任何输出,避免可能出现的缆线连接错误。
IEEE规格定义输入操作电流为350mA,最大涌入电流限制为400mA。在保留充份设计弹性的情形下,桥式二极管须能在PD装置的整个操作温度范围内应付高达500mA的直流电流。
如前所述,桥式二极管和瞬时电压抑制器须能承受IEC-60060所规定的瞬时浪涌。浪涌事件定义为CT1-CT2或SP1-SP2接脚出现任何一种极性的1000V脉冲。该脉冲电压的完整上升时间为300ns,下降一半所需的时间为 50μs,源阻抗则为201Ω。这表示瞬时抑制二极管在浪涌期间可能会遇到高达5A的瞬时电流,它基本上就是瞬时抑制元器件的峰值脉冲电流规格。
为了达到桥式电路和瞬时电压抑制器的功能
- TI基于UCD3138的高整合度新一代数字电源方案(12-07)
- 电源设计:整合电源管理与转换 简化电源系统设计(12-29)
- 反激式控制器将有源 PFC 功能电路整合在单级转换器(07-03)
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)