数字电源知识普及
过去的几年里,半导体和电源供货商花了很大力气,通过大量市场上发布的关于数字技术文献,推广数字电源的概念,这也可以解释为什么我们在今天看到越来越多的复杂的电源系统。但很多最终用户都持观望的态度,主要是由于不同的电源厂家采用不同的实现方法和架构。目前来看,还没有一个明确的大范围采用数字技术设计的征兆,设计人员仍处于不明确的氛围。此外,各种各样的供应商对“数字电源”定义也不同,这也引起市场层面对这一概念的混淆。那么,什么是真正的数字电源,它又能带来什么直接的好处呢?
电源管理和电源控制的区别
电源控制和电源管理之间的区别,是关于数字电源讨论中的关键概念。爱立信使用“电源控制”术语来强调电源供应系统内部的控制功能,尤其是个体内部能量流的循环管理。这一定义包含了反馈回路和内部管理维持功能。功率控制功能在与电源供应的开关频率实时监控中起到作用。这种类型的控制功能可以由模拟或者数字技术实现,电源供应系统无论采用哪种方式,呈现给最终用户的表现是基本一致的。这就是说,数字电源的使用不要求最终用户做任何改变和新的设计。
相应的,“电源管理”是关于一个或多个电源供应系统之外的通讯和控制。
包括电源系统配置,单个电源供应系统的监控,以及故障监测信息传送等。电源管理功能不是实时的,它们在一定的时间范围内起作用,要慢于电源供应系统的开关频率。目前,这些功能都趋于将模拟和数字技术结合。例如,电阻器通常用于调整输出电压,而给每个电源供应系统的电源排序则需要专线控制。按照爱立信的定义,数字电源管理意味着这些功能全部使用数字技术。此外,简化互连方式应用在某些类型的数据通信母线结构,优于在每个电源供应系统之间使用多种定制的互连手段进行排序和侦错。
电源控制的实现技术
参见图1左面,脉宽调制芯片提供了典型的原边模拟控制回路。电源的输出电压由一个阻性分压器件采样后送入误差放大器与直流标准电压进行比较。误差放大器的输出是一个模拟信号,其幅度与电源输出电压所需要的校正大小成正比。这个信号反馈到脉宽调制芯片,产生一个相应脉宽的脉冲信号,用以控制功率半导体器件(一般为MOS管)的“导通时间”。因为MOS管的输入门电容较大,驱动电路便能有效地开关它们。一般使用一个固定的阻容网络来补偿控制回路,以确保电源动态响应和稳定度之间的合理平衡。
电源的另外两个主要部分就是输入输出的滤波网络。它们通常由电感、电容和电阻组成并提供多种功能。输入滤波部分保护电源不受输入电压跳变的影响,在负载跳变时提供储能,同时和外部滤波电路一起使电源满足输入传导电磁兼容的要求。输出滤波部分使输出电压更平滑以满足纹波噪声的指标,同时也帮助电源储能以满足负载的动态电流要求。重要的是,无论是模拟或数字控制架构,输入和输出滤波电路以及功率器件在本质上会保留一致。
典型的数字电源控制系统的结构参见图1右面。输出电压的遥测与模拟系统相似。但是数字控制系统中使用模数转换器替代了模拟控制系统中的误差放大器,将采样得到的电压信号转换为一个二进制数。除了输出电压,知道其它模拟参数也很重要,例如输出电流和电源的温度。当然使用多个分开的模数转换器能够测量各个参数,但是一般使用一个前置多路复用器的模数转换器将会更经济。复用器会在各个测得的模拟参数之间切换并将其按序(并—》串)输入模数转换器。
由于多路复用器和模数转换器的采样速率是固定的,模数转换器为每一个参数输出一系列数字,每一系列数字是由一个已知的周期分开。这些数值提供给一个微处理器,为系统提供了工作流程。板子上的程序存储器存储了微处理器的控制运算法,用于执行一系列基于模数转换器输出值的计算。这些计算的结果是一些参数,例如误差信号,驱动极所需的脉宽,针对各种驱动输出优化的延迟值,以及环路补偿参数。模拟系统中外部环路补偿元件就不再需要了。生产过程中,参数的比较参考值,例如输出电压、输出电流、温度限定值存储在非易失性存储器里,或者在系统启动时可以下载到数据存储器中。
和模拟控制相比,数字控制在适应输入和负载条件变化方面更加灵活。通常,模拟的方法是为一个给定的控制参数配置一个折衷的设置,然而数字控制系统能够在转换器工作环境作用下改变控制参数。例如,在同步的负载点(POL)降压型的稳压器里,死区时间保证了上端和下端的场效应晶体管永远不会同时工作。模拟控制系统为了最恶劣的工作条件,采用了固定的定时网络去设置死区时间。但是
- 控制系统中常见的几种地线详解(10-13)
- 真正的数字电源是什么?(05-12)
- 如何利用智能MOSFET提升数字电源性能?(12-09)
- 解析数字电源与模拟电源的优劣(12-08)
- 基于数字电源控制器UCD3138的一种新的输入电流检测方法(二)(12-08)
- 数字电源与模拟电源的发展趋势(12-08)