EMC器件选择及电路设计
时间:02-18
来源:互联网
点击:
图2 时钟扩频导致的辐射降低
1.2模拟器件和电路设计
1.2.1 选择模拟器件
从EMC的角度选择模拟器件不象选择数字器件那样直接,虽然同样希望发射、转换速率、电压波动、输出驱动能力要尽量小,但对大多数有源模拟器件,抗扰度是一个很重要的因素,所以确定明确的EMC订购特征相当困难。
来自不同厂商的同一型号及指标的运算放大器,可以有明显不同的EMC性能,因此确保后续产品性能参数的一致性是十分重要的。敏感模拟器件的厂商提供EMC或电路设计上的信噪处理技巧或PCB布局,这表明他们关心用户的需求,这有助于用户在购买时权衡利弊。
1.2.2 防止解调问题
大多数模拟设备的抗扰度问题是由射频解调引起的。运放每个管脚都对射频干扰十分敏感,这与所使用的反馈线路无关(见图3),所有半导体对射频都有解调作用,但在模拟电路上的问题更严重。即使低速运放也能解调移动电话频率及其以上频率的信号,图4表明了实际产品的测试结果。
为了防止解调,模拟电路处于干扰环境中时需保持线性和稳定,尤其是反馈回路,更需在宽频带范围内处于线性及稳定状态,这就常常需要对容性负载进行缓冲,同时用一个小串联电阻(约为500)和一个大约5PF的积分反馈电容串联。
进行稳定度及线性测试时,在输入端注入小的但上升沿极陡 (<1ns) 的方波信号(也可以通过电容馈送到输出端和电源端),方波的基频必须在电路预期的频带内,电路输出应用100MHz(至少)的示波器和探针进行过冲击和振铃检查,对音频或仪表电路也应如此,对更高速模拟电路,要选取频带更宽的示波器,同时注意使用探头的技巧。
超过信号高度50%的过冲击表明电路不稳定,对过冲击应予以有效的衰减,信号的任何长久的振铃(超过两个周期)或突发振荡表明其稳定度不好。
以上测试应在输入及输出端均无滤波器的情况下进行,也可以用扫频代替方波,频谱分析仪代替示波器(更易看出共振频率)
1.2.3其它模拟电路技术
获得一稳定且线性的电路后,其所有联线可能还需滤波,同一产品中的数字电路部分总会把噪声感应到内部连线上,外部连线则承受外界的电磁环境的骚扰。滤波器将在后面介绍。
决不要试图采用有源电路来滤波和抑制射频带宽以达到EMC要求,只能使用无源滤波器(最好是RC型)。在运放电路中,只有在其开环增益远大于闭环增益时的频率范围内,积分反馈法才有效,但在更高频率,它不能控制频率响应。
应避免采用输入、输出阻抗高的电路,比较器必须具有迟滞特性(正反馈),以防止因为噪声和干扰而使输出产生误动作,还可防止靠近切换点处的振荡 。不要使用比实际需要快得多的输出转换比较器,保持dv/dt在较低状态。
对高频模拟信号(例如射频信号),传输线技术是必需的,取决于其长度和通信的最高频率,甚至对低频信号,如果对内部联接用传输线技术,其抗扰度也将有所改善。
有些模拟集成电路内的电路对高场强极为敏感,这时可用小金属壳将其屏蔽起来(如果散热允许),并将屏蔽盒焊接到PCB地线面上。
与数字电路相同,模拟器件也需要为电源提供高质量的射频旁路(去耦),但同时也需低频电源旁路,因为模拟器件的电源噪声抑制率(PSRR)对1kHz以上频率是很微弱的,对每个运放、比较器或数据转换器的每个模拟电源引脚的RC或LC滤波都是必要的,这些电源滤波器转折频率和过渡带斜率应补偿器件PSRR的转折频率和斜率,以在所关心的频带内获得期望的PSRR。
一般的EMC设计指南中都很少涉及射频设计,这是因为射频设计者一般都很熟悉大多数连续的EMC现象,然而需要注意的是,本振和IF频率一般都有较大的泄漏 ,所以需要着重屏蔽和滤波。
1.2模拟器件和电路设计
1.2.1 选择模拟器件
从EMC的角度选择模拟器件不象选择数字器件那样直接,虽然同样希望发射、转换速率、电压波动、输出驱动能力要尽量小,但对大多数有源模拟器件,抗扰度是一个很重要的因素,所以确定明确的EMC订购特征相当困难。
来自不同厂商的同一型号及指标的运算放大器,可以有明显不同的EMC性能,因此确保后续产品性能参数的一致性是十分重要的。敏感模拟器件的厂商提供EMC或电路设计上的信噪处理技巧或PCB布局,这表明他们关心用户的需求,这有助于用户在购买时权衡利弊。
1.2.2 防止解调问题
大多数模拟设备的抗扰度问题是由射频解调引起的。运放每个管脚都对射频干扰十分敏感,这与所使用的反馈线路无关(见图3),所有半导体对射频都有解调作用,但在模拟电路上的问题更严重。即使低速运放也能解调移动电话频率及其以上频率的信号,图4表明了实际产品的测试结果。
为了防止解调,模拟电路处于干扰环境中时需保持线性和稳定,尤其是反馈回路,更需在宽频带范围内处于线性及稳定状态,这就常常需要对容性负载进行缓冲,同时用一个小串联电阻(约为500)和一个大约5PF的积分反馈电容串联。
进行稳定度及线性测试时,在输入端注入小的但上升沿极陡 (<1ns) 的方波信号(也可以通过电容馈送到输出端和电源端),方波的基频必须在电路预期的频带内,电路输出应用100MHz(至少)的示波器和探针进行过冲击和振铃检查,对音频或仪表电路也应如此,对更高速模拟电路,要选取频带更宽的示波器,同时注意使用探头的技巧。
超过信号高度50%的过冲击表明电路不稳定,对过冲击应予以有效的衰减,信号的任何长久的振铃(超过两个周期)或突发振荡表明其稳定度不好。
以上测试应在输入及输出端均无滤波器的情况下进行,也可以用扫频代替方波,频谱分析仪代替示波器(更易看出共振频率)
图3 任何半导体器件都会发生解调,所有引线都敏感
图4 运算放大器能够有效地解调射频信号1.2.3其它模拟电路技术
获得一稳定且线性的电路后,其所有联线可能还需滤波,同一产品中的数字电路部分总会把噪声感应到内部连线上,外部连线则承受外界的电磁环境的骚扰。滤波器将在后面介绍。
决不要试图采用有源电路来滤波和抑制射频带宽以达到EMC要求,只能使用无源滤波器(最好是RC型)。在运放电路中,只有在其开环增益远大于闭环增益时的频率范围内,积分反馈法才有效,但在更高频率,它不能控制频率响应。
应避免采用输入、输出阻抗高的电路,比较器必须具有迟滞特性(正反馈),以防止因为噪声和干扰而使输出产生误动作,还可防止靠近切换点处的振荡 。不要使用比实际需要快得多的输出转换比较器,保持dv/dt在较低状态。
对高频模拟信号(例如射频信号),传输线技术是必需的,取决于其长度和通信的最高频率,甚至对低频信号,如果对内部联接用传输线技术,其抗扰度也将有所改善。
有些模拟集成电路内的电路对高场强极为敏感,这时可用小金属壳将其屏蔽起来(如果散热允许),并将屏蔽盒焊接到PCB地线面上。
与数字电路相同,模拟器件也需要为电源提供高质量的射频旁路(去耦),但同时也需低频电源旁路,因为模拟器件的电源噪声抑制率(PSRR)对1kHz以上频率是很微弱的,对每个运放、比较器或数据转换器的每个模拟电源引脚的RC或LC滤波都是必要的,这些电源滤波器转折频率和过渡带斜率应补偿器件PSRR的转折频率和斜率,以在所关心的频带内获得期望的PSRR。
一般的EMC设计指南中都很少涉及射频设计,这是因为射频设计者一般都很熟悉大多数连续的EMC现象,然而需要注意的是,本振和IF频率一般都有较大的泄漏 ,所以需要着重屏蔽和滤波。
- CMOS芯片的ESD保护电路设计(08-06)
- 电路设计中如何防止静电放电?(03-16)
- rs485电路设计自有套路 三类经典RS-485端口EMC防护方案详解(07-02)