工程师分享:新型高功率LED驱动电路探索
逐渐取代传统白热灯泡与荧光灯的发光二极管(LED),具备低污染、低消费电力、高发光效率、长寿命、无水银成分等优势,它的发展动向已经成为全球关注的焦点。最近几年随着LED发光效率甚至超越传统荧光灯,一般认为未来提高照明灯具整体的综合效率越来越重要,然而实际上不论是哪种型式的LED灯驱动电路,都会有10~20%左右的消费电力损失,因此改善电源的转换效率,再度成为重要课题。
以往使用AC100V平顺化后的DC140V电源方式,极容易发生突波电流。所谓「突波电流」突波电流是指开启电源后,流入平顺化电容器的巨大充电电流。具有平顺化电容器、可以驱动复数个LED的驱动电路,点灯时可能会造成断电器跳脱,此外电源切换器高温融溶附着,以及对电路组件的过负载,都可能引发各种问题。虽然突波电流抑制电路已经实用化,不过它的电源转换效率却很低,因此研究人员使用半导体继电器(Photo MOS Relay),开发LED灯专用的驱动电路,实现LED驱动电路高效率化的目的。
根据实验结果证实90~110V变动的电源电压,电源转换效率高达80.7~91.8%,而且还能够降低突波电流。新型LED灯专用驱动电路,充分发挥2个半导体继电器特性,它具有高效率、低消费电力、低组件数量、低产业废弃物与低制作成本等特征。照明灯具即使提高1%的动作效率,对二氧化碳排放量的抑制、或是减缓地球暖化都有重大贡献,因此LED灯专用的驱动电路的发展,已经受到业者高度重视。接着本文要探讨使用半导体继电器突波电流抑制电路的新型LED灯驱动电路动作原理与特征。
LED驱动电路
图1是新型LED灯专用驱动电路。考虑照明灯具整体效率时,电源效率与LED发光效率同样重要。基本上LED的顺向电压只有数V非常低,因此LED灯可以使用各种方法,转换AC100~110V电源驱动LED,然而LED灯专用驱动电路本身,就有各式各样的特性与问题,接着根据电源效率的观点,透过各种驱动电路的比较,深入探讨各种驱动方式的特征。
驱动方式
驱动方式主要分成三大类,分别是:(1)降压、分压方式;(2)直接使用AC100~110V方式;(3)使用DC140V方式。
有关第(1)项降压、分压方式,本质上LED的顺向电压非常低,因此可以使用变压器降压,或是使用平顺化电容器降压,类似这样降压、分压方式,主要缺点是损失非常大,经常高达10~20%。此外LED高辉度化时,必须提高输出、增加电流,然而电流稳定化却需要使用电流稳定化控制电路,其结果反而造成组件使用数量、制作成本有增加之虞。
有关第(2)项,直接使用AC100~110V方式施加至LED灯群,由于这种方式没有任电力何损失,因此它的电源效率几乎是100%,目前所有交流驱动LED灯都采用这种方式。动作时它是直接对LED灯施加半波或是全波波形,由于这种方式并没有平顺化电路,因此辉度会急遽降低,严重时会出现闪烁现象,此外LED的使用数量高达2倍,即使如此下列驱动方式同样会使全光束降低。
有关第(3)项使用非降压DC方式,由于这种方式的AC100~110V未作降压、分压,直接进行全波整流、平顺化取得DC140V的电源,因此电源效率非常高,可以施加到LED灯群的电压也超过100V。非降压DC方式通常是串联连接LED,它可以获得非常明亮的照明,不过这种方式使用大静电容量的平顺化电容器,因此会有许多突发电流流动。
驱动方式的比较
表1为上述驱动方式的比较结果一览。
突波电流抑制电路
表1中的非降压DC型驱动方式,主要缺点会有突波电流的困扰。如上所述所谓「突波电流」是指开启电源后,流入平顺化电容器的巨大充电电流。突波电流经常成为断电器跳脱、或是对电路组件造成过负载的主要原因,如图2所示为抑制突波电流,类似电阻串联连接至平顺化电容器等方法都非常有效,然而突波电流是过渡期间发生的现象,过渡期间以外的恒定状态,抑制突波电流的电阻,反而会引发不必要的电力损失。为削减恒定状态时的额外电力损失,以往大多使用热敏型(Thermist)或是闸流体型(Thyristor)构成的电流抑制电路,不过这类电路却成为提升电源效率的主要障碍。
突波电流抑制电路的必要性
电荷未滞留在平顺化电容器时,切换器一旦变成ON,为了滞留电荷会有很大的突波电流流动,反过来说无突波电流抑制电路的场合,理论上该值会变成无限大。新开发的电路会先使电源电压以DC140V流入LED,接着再使用220μF使平顺化电容器,能够以最大电流155mA动作。
图3是测试突波电流的实验电路,根据测试结果显示突波电流的最大值为36A。为测试电流本电路刻意附加1Ω的电阻,不过实际上却是0Ω,换句话说可能有更多的电流流动,类似这样过大电流流动会引发上述弊害,因此必须设置突波电流抑制电路。
- 一种基于L6562的高功率因数Boost电路的设计方案(12-08)
- ucc28019_基于UCC28019的高功率因数电源(12-08)
- 功率晶体管助高效率、高功率密度转换器实现(12-08)
- 高功率因数的单相全桥PWM整流电路原理(12-07)
- 实现高功率密度二次模块的方法(12-07)
- 空间受限应用的最高功率密度、多轨电源解决方案(二)(12-07)