光伏发电逆变器拓扑及关键技术综述
效率优化器主要是补偿电池板的不匹配(电池组差异、阴影及遮挡等引起的不匹配)带来的损失。图4示出NS公司的效率优化器拓扑结构,目前有公司将电弧检测和灭弧功能集成在效率优化器中。功率优化器可以不存在大量电容(主要靠电感来升压)而微型逆变器存在大量的电容,而电容的寿命不可能达到电池板级那么长。
3 未来逆变器拓扑及发展趋势
3.1 高可靠性
任何产品可靠性都是第1位的,光伏逆变行业也不例外,主要表现在:控制算法;硬件电路上的冗余和降额设计;软件系统的可靠性;元器件选择及DFEMA设计;EMC问题;故障数据存储与在线故障检测与诊断;基于容错技术光伏并网逆变器的可靠性研究等方面。只有保证了可靠性,才会产生好的产品。
3.2 高效率
效率指标包括峰值效率、欧洲效率和CEC效率,在PHOTO杂志上也会定期公布相关逆变器的效率,从发电量角度来衡量逆变器产品的性能,故未来逆变器产品设计也应主要兼顾欧洲效率和CEC效率,从而对用户产生直接的经济效益。不仅要提高重载下的效率,轻载下的效率也很重要,对电压电流在线信号的采样精度及轻载MPPT的精度,多峰MPPT跟踪技术,PV电池效率的提升都提出了新要求。高效拓扑也是未来发展的方向。
3.3 网侧高压场合适用的拓扑
大功率逆变器成本压力日趋增大,提高逆变器输出电压有利于减少变换器、配电器件、输电线路、变压器的电流应力,进而降低成本,提高效率。要使功率器件的电压应力增大,需更高压的器件,多电平拓扑的出现解决了此问题。适用的拓扑有REFU的五电平拓扑,接入电网的电压可达690 V;Powerone的四电平拓扑,级联结构构造多电平。
4 结论
介绍了国内外光伏逆变行业逆变拓扑的发展情况,并对拓扑发展中带来的一些问题以及关键技术进行了分析,同时也预测了未来逆变器拓扑的发展趋势,指出提高电网侧电压及多电平拓扑是未来拓扑的发展方向。随着新拓扑的不断创新和应用,未来也需在各种关键技术上不断地突破,进一步提高光伏并网逆变器的性能。
- 一种应用于光伏系统的双模式MPPT控制方法研究(12-28)
- 用于离网型光伏发电中带储能的新颖多电平逆变器(12-09)
- 如何设计光伏发电系统中的逆变器(12-08)
- 两级拓扑结构的离网型光伏逆变器设计(06-28)
- 盘点目前主要光伏发电技术之比较(01-11)
- 光伏发电用的功率调节器及其高效率化技术(12-14)