微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 电磁兼容(EMC) > 计算机TEMPEST技术及电磁兼容技术介绍

计算机TEMPEST技术及电磁兼容技术介绍

时间:02-18 来源:mwrf整理 点击:
电磁兼容的英文名称为Electromagnetic Compatibility ,简称EMC。电磁兼容技术涉及的频率范围宽达0-400GHz,研究对象除传统设施外,涉及芯片级,直到各型舰船、航天飞机、洲际导弹,甚至整个地球的电磁环境。本文章主要介绍计算机中的电磁兼容情况。

 

一、计算机TEMPEST技术 

 

计算机TEMPEST技术发展至今已有40年的历史,它是在电磁兼容(EMC)领域发展起来的一个新的研究方向。TEMPEST计划的具体内容是针对信息设备的电磁辐射与信息泄漏问题,从信息接收和防护两个方面所展开的一系列研究和研制工作,包括信息接收、破译水平、防泄漏能力与技术、相关夫范标准及管理手段等。

 

由于计算机系统是各种信息处理设备中最关键和重要的组成部分,因而也是利用信息设备的电磁发射来获取信息情报更为及时、准确、广泛、连续,且安全、可靠、隐蔽。正是这样,TEMPEST防护研究一般都是针对计算机系统及其外设配置而言的。TEMPEST的研究对象还包括接收系统、电传机、数字电话等。

 

信息处理设备的电磁辐射有两方面影响:1)对电磁环境构成污染;2)对信息安全与信息保密会构成严重威胁。 

 

已经分析表明:对于由数字电路组成的信息处理设备来说,由于辐射频谱及谐波非常丰富,因而很容易被窃收和解译,其信息泄漏问题更为突出一严重,以计自机算机视频显示器例,其中各种印刷电路板,各部件之间的电源。信号接口与连线、数据线接地线、驱动电路、阴极射击线管等都可以产生程度不同的电磁辐射。在辐射频谱中,所包含的信息也不相同,包括时钟/数据信息频信息等。从理论上讲这些信息都是可以接收和解译的,只是难易程度。利用信息设备的电磁发射来获取信息情报更为及时、准确、广泛、连续,而且安全、可靠、隐蔽。

总之,在信息化社会,研究计算机TEMPEST技术已和研究计算机病毒一样,被认为是涉及计算机安全的重要方面,受到国内外学者的广泛关注。

 

二、计算机印刷电路板(PCB)中的电磁兼容(EMC)问题 

 

信息化社会的电子产品越来越趋向高速、宽带、高灵敏度、高密集度和小型化,这种趋势导致了EMC问题更加严重。计算机系统中PCB是一个典型的代表,PCB的电磁兼容(EMC)问题是目前微型计算机设计中急待解决的技术难题。

 

1、印刷电路板(PCB)中带状线、电线、电缆间的串音和电磁耦合 

 

印刷电路板(PCB)中带状线、电线、电缆间的串音是印刷电路板线路中存在的最难克服的问题之一。这里所说的串音是较广意义上的串音,不管其源是有用信号还中噪声,串音用导线的互容和互感来表示。当在EMC预测和解决EMI问题时,首先应确定发射源的耦合途径是传导的、辐射的、还是串音。例如,当PCB上某一带状线上载人控制和逻辑电平,与其靠近的第二条带状线上载有低电平信号,当平行布线长度超过10厘米时,预期产生串音干扰。当一长电缆载人几组串行或并行高速数据和遥控线时,串音干扰也成为主要问题。靠近的电线和电缆之间的串音是由电场通过互容,磁场通过互感引起的。

当考虑在PCB带状线、电缆中导体或靠近的电线和电缆的串音问题时,是主要的是确定电场(互容)、磁场(互感)耦合哪个是主要的。确定那种耦合模型主要取决于线路阻抗、频率和其他因素。对线路阻抗,一个粗略的原则是:1)当源和接收器阻抗乘积小于3002时,耦合的主要是磁场;2)当源和接收器阻抗乘积大于10002时,耦合的主要是电场;3)当源和接收器阻抗乘积在3002-10002之间时,则磁场或电场都可能成为主要耦合,这时取决于线路间的配置和频率。

 

然而,上述标准并不适用于所有的情况,例如在地(底)板上PCB带状线之间的串音,这时,PCB上带状线特性阻抗可能较低,而负载和源阻抗可能较高,但串音仍以电场(互容)耦合为主。

一般来说,在高频时电容耦合是主要的,但是如果源或接收器之一或两者采用屏蔽电缆并在屏蔽层两端接地,则磁场耦合将是主要的。另外;低频一般有较低的电路阻抗、电感耦合是主要的。

串音预测计算程序是计算机辅助PCB设计软中的重要内容,通过串音预测,可以保证PCB上数字和模拟信号适当的间距。由Quantic实验室编制的程序GREENFIELF2TM和EESOF编制的u Wave SPICKE程序可预测串音、延时和振荡。该程序可确定几层PCB布置的电压和脉冲上升时间表格。 

 

电磁耦合预测:当导体之间或信号导体与返回导体(可以是地平面)之间的距离较大时,采用电流元和电流环的发射和接收特性进行耦合预测更为精确。例如PCB上带状线端接高阻

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top