关于18英寸液晶显示器的辐射电磁干扰设计
层的印制线穿过了邻近接地层间隙的地方。例如,信号层上的高速数据和地址线穿过了接地层上的由时钟印制线产生的位于接地层的间隙。 接地层的隔离间隙被用来隔离电源电路和数字电路。然而,如果相邻层的高速线穿过间隙的话,那建立这个间隙的好处就失去了。在一个较早的原型中,隔离间隙很长,因此,在相邻层上的一些模拟红绿蓝印制线在间隙上穿过。 电源绝缘区的布局 主PCB上的电源层被分成许多不同的电源绝缘区。结果,电源层产生了许多间隙。当相邻层的信号印制线的回流电流围绕这些间隙流动时,这些间隙形成了一个潜在的EMI源。为了减小这些潜在的EMI源,要通过移动或者重新建立电源绝缘区来减少相邻层通过这些间隙 的印制线的数量。例如,一个可驱动PCB全部长度的12伏电源面不得已而在信号层上布线。一个电源绝缘区应该被移动,以使红绿蓝信号线不通过任何一个间隙。为了进一步减小潜在的EMI源,只有低速信号印制线能布在邻近的信号层。 EMI“天线”的测定法 在液晶显示器上可能有许多EMI“天线”。为了找出哪个EMI“天线”EMI的影响最大,利用了可选择的屏蔽方法。所选择的屏蔽方法包括了用铜带和铝箔去屏蔽所有可能的EMI源,然后每一次有选择性地暴露一个可能的EMI“天线”。用这种方法,每个EMI“天线”的贡献都可以被量化出来。 最重要的EMI“天线”被发现是在屏蔽体2背面驱动的屏蔽体1。当屏蔽体1和屏蔽体2被4个螺丝连接起来的时候,在高频时,这些螺丝并不是一个很好的电连接。这两个屏蔽体之间的不良连接就产生了一个EMI“天线”。为了消除这个EMI“天线”,可将指型簧片放置在两个屏蔽体之间。EMI测试显示,在放置了指型簧片后,在低于500MHz时EMI平均降低了2到3dB;而在高于500MHz时平均降低了5到10dB。 一些其他的低速电缆需要用铁氧体来减小EMI。在主PCB和按键PCB之间的一簇电线,以及来自主PCB为液晶监视器组件提供电源的电缆都携带了很多的噪声电流,这些证明了在电缆上加上铁氧体的正确性。 在主PCB和液晶显示器组件之间携带高速显示数据的屏蔽电缆并没有在远离屏蔽体之处连接到屏蔽体2上。没有连接到屏蔽体2上的电缆允许噪声电流自主PCB到屏蔽体2,并进行辐射。因此,高速数据电缆外部屏蔽体和屏蔽体2之间的连接要建立。辐射测量表明,当这种连接建立时,对于42.5MHz的输出时钟的谐波有了很大的减少,而在800MHz左右有适度减小。 进入屏蔽体2并连接到主PCB的红绿蓝电缆和电源电缆对辐射EMI的贡献不大,因此勿需改进。 建议的效果 在500MHz以下,所有的谐波都降低了3到5dB,一些降低了10dB。在500MHz以上,大多数时钟谐波都降低了5dB,一些降低的更多。 在液晶显示器中的最重要的EMI源并不是源于液晶显示器面板自身,而是来自用于处理并将模拟红绿蓝数据转换成为液晶显示器面板能够用的数字信号的主PCB。重要的EMI源就是由模数转换器、主处理器和存储芯片使用的不同时钟。潜在的EMI源(例如低压数字信号集成电路的输出)并不象最初所想的为EMI起到很大的贡献。EMI“天线”主要包括没有适当彼此连接的屏蔽体,同时也包括其他滤波不良的电缆连接的PCB。在一个宽频率范围内,合适的设计可使辐射的EMI减少3~5dB,或者更多。
- 1200V CoolSiCTM MOSFET兼具高性能与高可靠性(06-28)
- 如何借用同步整流架构提高电源转换器效率(12-09)
- 高端准谐振零压开关反激式转换器中的ESBT技术(12-09)
- A→D 转换器的保真度测试(12-09)
- 如何通过配置负载点转换器 (POL) 提供负电压或隔离输出电压(12-09)
- 基于LNK302/LNK304-306离线转换器的非隔离电源及恒流LED驱动器(12-08)