模拟前端(AFE)原理及选型指南
模拟前端处理的对象是信号源给出的模拟电视、模拟声音信号,其主要功能包括以下几个方面:
信号放大:当接收到的信号过于微弱,满足不了系统载噪比要求时,在前端要采用低噪声放大器进行放大,以提高载噪比。
频率变换:为了实现传输频道的某种配置,有时也为了避开某种干扰,前端需要对某些频道进行变换。例如,早期的有线电视系统基本上在VHF频段内传输信号,对于个别在UHF频段内播出的节目,可使用频道变换器,将其从UHF频段转换到VHF频段。另外,对于距离电视发射塔较近的地区,由于电视信号很强,用户的电视机会直接感应到强信号,该信号与有线电视前端接收下来的同一电视信号都会进入电视机,但两者存在时间差,将在电视机图像上形成不易消除的重影,因此,也需要将该频道信号转换成另一频道信号。
调制、解调:在接收卫星、微波信号时,需先对其进行解调,恢复视、音频信号,然后再将其调制为选定频道的射频信号;自办节目也需要经过调制后才能进入混合器;另外,一些开路信号也采用解调-调制的变换方式来进行处理。
邻频处理:有线电视系统采用邻频传输可以充分利用频谱资源,在有限的频带范围内尽可能多地传输节目,但同时也会造成邻频干扰问题。因此需要在前端采用各种技术措施来进行邻频处理,最大限度地消除邻频干扰。邻频处理主要包括声表面波滤波、锁相环路(PLL)频率合成技术、图像和伴音分通道处理、A/V比可调技术等,用来完成调制、解调、频率变换、混合等功能。
电平调整与控制:用于各频道的电平进行调整和控制,使频道内和频道间的电平波动不超过要求的范围。
混合:混合的目的是将所有处理后的信号复合在一起,以便用一条线路传输。
AFE选型
现在许多新颖的模拟前端(AFE-Analog Front End)瞄准了各种不同应用:有线和无线通信、工业电子、消费类产品,出现了专用和通用AFE来满足多种市场需求。
一般AFE为通用单元。AFE可以是少数为数字电路、多数为模拟电路器件,用一个简单的状态机控制多路转换器,将信号传输给一个或多个数据转换器。AFE也可以是多数为数字电路、少数为模拟电路器件,包括一个或多个数据转换器并带有其他微控制器外设。所有AFE的共同功能特点是它们的数据转换器(DAC和ADC)。其DAC结构没有大的差别,但ADC结构可以是Δ-Σ、连续渐近和流水线架构。每种架构在容吐量、分辩率、等待时间、滤波要求、功耗和硅占位面积方面均有局限性。不同的转换器架构在不同的目标应用中有不同的功能。
通用AFE
一些公司,包括ADI、Linear、Maxim和Silicon Labs采用硅CMOS增加仪器型ADC编程能力。其差别在于编程能力的类型一状态机或微控制器。如Linear 公司的ADC在输入具有引脚短接编程多路转换器,这种性能受到过程控制系统或传感器设计工程技术人员的喜爱。
不同的供应商对多路ADCAFE有不同的设计。这包括引脚短接或寄存器控制(通过并行接口)编程单或多数据转换器。
Linear 公司的LTC1850/51AFE片上8通道多路转换器向10或12位连续渐近ADC传送信号(见图1)。AFE具有扫描模式,可在8个多路转换通道间重复循环,并用连续扫描的16位地址和配置按顺序编程。也可以读回时序存储器。所有这些均通过短接AFE引脚来控制。
LTC1850家族中的每一款8位和10位产品都包含一对单连续渐近ADC和内置8通道多路转换器。绝对采样率可达1.25Msamples/s。但是,实际的采样率取决于采样的输入数量。也就是说,如果设计仅要求两个输入通道,那么,每个通道应连接多路转换器的4个输入,而每个通道的取样率应为625Ksamples/s。当每个多路转换器通道有不同的输入时,吞吐量为156Ksamples/s。
ADI公司的AD7266采用类似的设计理念。该器件集成了两个独立的12位连续渐近ADC,允许同时采样和转换两个通道,吞吐率达2Msamples/s。每个ADC前面加有一个3通道多路转换器和一个抵噪声、宽带跟踪保持放大器(可处理超过10MHz的输入频率)。每个ADC有两个模拟输入,可编程3个全差分对或6个单端通道。每个通道的转换结果,可在单独数据线上同时读取或在同一数据线上连续读取。
Maxim公司的1402多路转换的信号较少,但分辨率较高,用Δ-Σ调制器和数字分样滤波器可以达到16位精度(图2)。数字滤波器的用户可选择取样因数,允许降低转换分辨率以换来较高的输出数据率。在输出数据率480sps可实现真正的16位性能。可设置MAX1402的输入多路转换器,用来管理3个全差分信号或6个伪差分信号。多路转换器的后面是两个斩波放大器、一个可编程增益放大器(PGA,增益1~128)、一个用于消除系统漂移的粗DAC和一个2阶Δ
AD7266 Max1402 C8051F350 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...