微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 降低从中间总线电压直接为低电压处理器和 FPGA 供电的风险

降低从中间总线电压直接为低电压处理器和 FPGA 供电的风险

时间:10-11 来源:互联网 点击:

载。如果输入供电电压超过了齐纳击穿电压, SCR 触发,吸收足够的电流,熔断上游熔丝。这一方法相对简单,而且成本低,但是,其缺点包括齐纳二极管击穿电压的精度、SCR 栅极触发门限变化、SCR 和熔断响应时间的变化、以及从故障中恢复所需要付出的努力等 (例如,实际处理熔丝,并重新启动系统)。如果待考虑的电压源对数字内核供电,由于大电流时的正向电压降与最新数字处理器的内核电压相当,甚至高于内核电压,那么,SCR 的保护功能非常有限。考虑到这些缺点,传统的过压保护方法并不适用于高压至低压 DC/DC 转换供电负载,例如,价格比较昂贵 (不上千都可能要几百美元) 的 ASIC 或者 FPGA。

图1: 传统的过压保护电路包括熔丝、SCR和齐纳二极管。虽然成本低,但是这一电路响应时间不足以实现对最新数字电路的可靠保护,特别是上游供电电源是中间电压总线的情况。而且,即使从过压故障中进行最简单的恢复也很麻烦并非常耗时。

结合了电源和保护电路的最新创新

更好的解决方案是准确地探测到即将出现的过压情况,迅速应,断开输入供电,通过低阻抗通路释放掉负载上的过量电压。现在,采用 LTM4641 降压 μModule? 稳压器强大的保护功能可以实现这一解决方案。器件的核心是额定 38V 的 10A 降压稳压器,含有电感、控制 IC、电源开关和补偿电路,这些都在一个表面安装封装中。但是,为 ASIC、FPGA 和微处理器等昂贵的负载增加保护需要功能更强的监视和保护电路。LTM4641 一直监视输入欠压、输入过压、温度过高、以及输出过压和过流状态,并正确的做出响应以保护负载。为避免错误或者过早的执行保护功能,除了过流保护,每个受监视参数都内置了抗干扰和用户可调触发门限,通过电流模式控制,在每一个周期中可靠的实现过流保护。出现输出过压状态时,LTM4641 在 500ns 的故障探测时间内做出响应 (图 2)。

观看 LTM4641 的实时保护:http://video.linear.com./143

图2: LTM4641 在 500ns 内响应过压状态,保护负载不受电压应力的影响。(VIN = 38V,VOUT = 1.0V,可调过压触发门限设置在 +11%)

LTM4641 内部体系结构不但使其能够迅速可靠的响应,而且,在故障状态减弱后,甚至能够自动复位,恢复工作。采用了差分感测放大器对负载的电源终端电压进行稳压,减小了共模噪声,以及 LTM4641 和负载之间 PCB 走线压降导致的误差。在电路、负载和温度变化时,负载的 DC 电压稳压精度优于 ±1.5%。这一精确的输出电压测量结果被送入高速输出过压比较器,触发 LTM4641 的保护功能。

探测到过压状态后,μModule 稳压器同时迅速采取多种措施。外部 MOSFET (图3中的 MSP) 断开输入供电,从稳压器和昂贵的负载上去除高电压通路。另一个外部 MOSFET (图3中的 MCB) 负责执行一种低阻抗放电功能,可对负载的旁路电容器实施快速放电 (图 3 中的 C)。LTM4641 中的 DC/DC 降压稳压器进入闭锁关断状态,在 HYST 引脚上发出故障信号,系统可以使用该信号来启动很好管理的关断过程和 / 或进行系统复位。采用了独立于控制环参考电压的专用电压参考来探测故障状态。如果控制环的参考出现故障,这就实现了抗单点失效的功能。

图3: LTM4641 输出过压保护图。两个探针图标对应于图2 中的波形

系统怎样从故障中恢复进一步显示了 LTM4641 保护功能相对于传统熔丝 / SCR 保护方法的优势。在传统过压保护方法中,熔丝方法取决于电源与昂贵的负载相分离。因此,在系统出现故障后,必须采取实际措施来去掉并替换熔丝,以便系统恢复正常的工作。作为对比,通过触发逻辑电平控制引脚,或者配置 LTM4641 为用户设定的超时时间过期后自治重启,清除故障状态,LTM4641 能够迅速恢复正常工作。不需要实际替换元器件,对于要求长时间运行和 / 或在远端工作的系统,这一点非常关键。如果 LTM4641 恢复工作后,又出现了故障,那么,立即会采取后续保护措施来保护负载。

输入浪涌保护

在某些情况下,仅有输出过压保护功能是不够的,还需要输入过压保护功能。 LTM4641 的保护电路能够监视输入电压,一旦超过了用户配置的电压门限,激活其保护功能。如果预计的最大输入电压超过了模块的额定 38V,通过增加一个外部高电压 LDO,输入浪涌保护可以增大到 80V, LTM4641 仍然能够正常工作,保持控制和保护电路存在运作 (图4)。

图4: 使用 LTM4641 和外部 LDO 可使输入浪涌保护高达 80V

结论

市场对系统性能和运行时间的要求越来越高,并且大量使用了最新的数字处理器,工程师必须考虑降低风险的策略,特别是采用了 12V~28V 的分布式电源总线或

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top