SOC四元新型电动汽车锂电池管理系统的研究与实现
关键温度测量点的实际放电有效电量。
在软件设计中,我们利用对所给出的几个关键测量点进行分段曲线拟和,构造出电池在不同温度下的容量曲线。再将当前放电温度下电池的有效容量折算到20℃下的有效容量,这样就完成了电池在放电下的温度补偿。当温度变化时,对照容量曲线就可修正电池的总容量。3.5自放电补偿
对于不同类型的电池,自放电速度是不一样的。而且,不同类型的电池,影响自放电的主要因素也不完全一样。影响自放电的因素,有温度、电池的剩余电量等。当温度愈髙,SOC愈大,自放电程度越深。电池厂商给出的参数说明,在充电较满的状态下,前3天电池的自放电最严重。而且,自放电随温度不同也有较大差别。表给出不同温度下搁置3天电池自放电率。

在我们构造的模型中,可以根据上表采用线性插值来近似计算电池自放电损失的能量。系统硬件中设有一片时钟芯片PCF8583,每次系统上电开机时就可以计算出和上次关机之间的时间间隔,同时根据温度传感器采集的电池环境温度,依照电池厂商提供的自放电率与静置天数、温度的关系曲线,来修正电池的剩余电量,进而对SOC的预测做出相应的补偿。
4电池不一致性对SOC的影响
电池组是由若干个单体电池串联组成的。由于各单体电池容量的不一致,以串联的电池组为对象对电池组进行充放电,而不考虑单体电池的容量差别,就不可避免地会导致某些单体电池的过充、过放或充电不足。影响了电池的有效利用。

由于电池的不一致性,在预测SOC时应以性能最差的电池作为预测的依据。如图所示为在不一致性的电池放电时的特性曲线。在放电前期电池的电压变化趋势相同,好电池与坏电池的差别体现不明显,但到后期性能较差的电池由于电池电量耗尽,电压将迅速跌落,急剧下降的电压反映出较大的U,此时如果继续放电将会导致过放现象。可以利用电池组中电压最低的那个单体电池电压U min与所有单体电池平均电压Uave的差值U作为修正的依据,按照单电池电压值与容量的关系曲线来进行修正。公式如下:

其中SOC为SOC的修正值。Ks为实验得到单电池电压值与容量的关系系数,该系数Ks为大量单电池容量与端电压实验的统计值。U要扣除历史技术档案中的单电池电压差值。3.5自放电补偿
对于不同类型的电池,自放电速度是不一样的。而且,不同类型的电池,影响自放电的主要因素也不完全一样。影响自放电的因素,有温度、电池的剩余电量等。当温度愈髙,SOC愈大,自放电程度越深。电池厂商给出的参数说明,在充电较满的状态下,前3天电池的自放电最严重。而且,自放电随温度不同也有较大差别。表给出不同温度下搁置3天电池自放电率。

在我们构造的模型中,可以根据上表采用线性插值来近似计算电池自放电损失的能量。系统硬件中设有一片时钟芯片PCF8583,每次系统上电开机时就可以计算出和上次关机之间的时间间隔,同时根据温度传感器采集的电池环境温度,依照电池厂商提供的自放电率与静置天数、温度的关系曲线,来修正电池的剩余电量,进而对SOC的预测做出相应的补偿。
4电池不一致性对SOC的影响
电池组是由若干个单体电池串联组成的。由于各单体电池容量的不一致,以串联的电池组为对象对电池组进行充放电,而不考虑单体电池的容量差别,就不可避免地会导致某些单体电池的过充、过放或充电不足。影响了电池的有效利用。

由于电池的不一致性,在预测SOC时应以性能最差的电池作为预测的依据。如图所示为存在不一致性的电池放电时的特性曲线。在放电前期电池的电压变化趋势相同,好电池与坏电池的差别体现不明显,但到后期性能较差的电池由于电池电量耗尽,电压将迅速跌落,急剧下降的电压反映出较大的U,此时如果继续放电将会导致过放现象。可以利用电池组中电压最低的那个单体电池电压U min与所有单体电池平均电压Uave的差值U作为修正的依据,按照单电池电压值与容量的关系曲线来进行修正。公式如下:

其中SOC为SOC的修正值。Ks为实验得到单电池电压值与容量的关系系数,该系数Ks为大量单电池容量与端电压实验的统计值。U要扣除历史技术档案中的单电池电压差值。
锂电池管理 相关文章:
- 基于OZ8940芯片电动汽车锂电池管理系统设计方案(08-24)
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
