离网太阳能光伏系统设计中的电源电子应用解决方案
着应用和地点的不同而发生变化。
此外,系统架构(尤其是设备的连接方式)等内部因素也会影响组件的尺寸。遗憾的是,不可能实现100%的转换效率,因此必须要考虑到损失。在以上论述中,能量存储和太阳能阵列的规模决定了可提供的能量和功率。要计算需要产生的功率,需要考虑电源电子装置。电源电子装置拓扑
尽管图1中的系统框图有助于了解能量平衡,但要考虑影响组件尺寸的内部因素,还需要更多细节。图4更详细地描述了系统实现。它也提出了会影响电源电子装置策略的问题。
基于单片机的电源策略可提供极大的灵活性。它允许在各种应用中使用标准参考设计,同时仍然可以满足应用特定的需求并实现高级功能。它不仅可支持基本电源转换,还在选择核心组件方面提供了灵活性,支持各种工作条件下的变化并实现优化。此外,还可以轻松实现通信和诊断等高级功能。专用的分立式电源转换器则无法实现这一点。
在此实现方案中,最大的问题来自于负载;关键问题是负载的性质是什么,以及“负载控制”需要是什幺样子的?需要电压还是电流?电压或电流设定值需要精确到什幺程度?负载控制可能像继电器一样简单,也可能像3相逆变器一样复杂。不管怎样,它都需要充电器功能(即电源电子装置),使用太阳能为能量存储设备充电。而且,如果系统允许,它还可以提供最大峰值功率跟踪(MPPT)功能。
可能首先要做出的决策之一是应该使用公共电源轨架构还是分布式电源轨架构。图5展示了两者的差别,负载特性很可能对选择起决定作用。如果负载需要恒定电压,则图5a中显示的公共轨可能是最佳选择。在这种情况下,负载控制器是一个简单的继电器或固态开关。太阳能直流/直流转换器使公共轨保持在电压设定值,电池充电器从母线汲取电力为能量存储设备充电。这种方法的优点和缺点均在于功率转换步骤。考虑到85%的平均功率转换效率,这意味着每次转换有15%的损失。如果太阳能直流/直流转换器能够支持负载,那幺仅需要一个电源转换步骤。但要给电池充电,则需要两个电源转换步骤(太阳能直流/直流转换器到公共轨以及公共轨到双向直流/直流转换器),外加一次额外的转换(双向直流/直流转换器到公共轨)才能支持负载。
如果仅在太阳能直流/直流转换器不工作时(即夜晚)使用负载,则也可以使用公共轨。在这种情况下,可去掉太阳能直流/直流转换器,并且可使用能量存储设备上的双向直流/直流转换器通过太阳能阵列为电池充电;也可以使用替代方案为负载供电。此时,能量仅需要经过两个电源转换步骤(太阳能直流/直流转换器到双向直流/直流转换器,以及双向直流/直流转换器到负载)。
图6中的分布式架构更灵活,可支持不断变化的负载需求。在这种情况下,可使用太阳能直流/直流转换器支持能量存储轨(即充电),直流/直流转换器可支持负载需求。这种方法的缺点是始终有两次电源转换。但总的来说,如果预计太阳能阵列和负载同时工作,则这是最优的解决方案。
简单示例
在从高阶角度查看电源结构后,我们现在来看一个简单的低功耗示例。设想一个可经常在施工桶或混凝土护栏顶部看到的“施工区危险报警闪光灯”。从高阶角度看,报警闪光灯仅在夜晚工作,电池将在所有其它时间充电。这种特性允许我们使用公共母线架构,因为报警闪光灯或者在充电,或者在闪烁,两种操作不会同时进行。我们可以将太阳能直流/直流转换器、双向直流/直流转换器和负载控制合并成一个单独的双向转换器来进一步简化拓扑。图6给出了建议的电路设计。
图6:建议的电路图
建议的电路设计采用Microchip的PIC16F690单片机和两个MC MCP1630模拟PWM控制器来驱动双向反激式转换器。在白天,此配置使用太阳能作为输入并对电池充电。在夜晚,由于在太阳能阵列上检测到的能量低到可忽略不计,转换器开始按照编程的“闪烁”模式为LED灯供电。表1列出了这些假设和计算结果。
表1:应用假设和结果
结论
分布式应用将继续利用太阳能安装成本不断降低这一趋势。最终应用需求将对系统拓扑起决定作用并突出关键的性能权衡问题。基于单片机的电源转换架构在支持各种最终应用以及支持光伏太阳能技术的持续发展方面具有极大的灵活性。这种灵活性意味着当前的设计在未来仍有可用性
- 嵌入式碟式太阳能热发电控制器研制与应用(06-28)
- 太阳能光伏逆变器选用需遵循正确方法(12-09)
- 现有光伏和太阳能并网系统的电池后备电源选项(12-09)
- 空气能热水器和太阳能热水器对比浅析(12-09)
- 浅析太阳能逆变器的功能以及分类(12-09)
- 太阳能电池组件功率计算(12-09)