微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > SAR模数转换器的前端器件设计探究

SAR模数转换器的前端器件设计探究

时间:12-05 来源:互联网 点击:

示的不是总谐波失真,而是一般最为重要的二次和三次谐波成分。ADA4841-1的噪声非常小,失真特性优异,足以驱动18位ADC到大约30 kHz.当输入频率接近100 kHz或更高时,失真性能开始下降。为在高频时实现低失真,需要使用功耗更高、带宽更宽的放大器。较大的信号也会降低性能。对于0 V至5 V的ADC输入,失真性能信号范围将提高到5 V p-p.从图8所示的失真图可看出,这将产生不同的性能,因此放大器可能需要测试,以确保它满足要求。图9比较了多个输出电压水平的失真性能。

图9. 不同输出电压水平下失真与频率的关系

裕量,即放大器最大实际输入/输出摆幅与正负电轨之差,也可能影响THD.放大器可能具有轨到轨输入和/或输出,或者要求最高1 V甚至更大的裕量。即便是轨到轨输入/输出,如果工作信号电平接近放大器的供电轨,也将难以获得良好的失真性能。因此,最好应选择让最大输入/输出信号远离供电轨的电源电平。考虑一个0 V至5 V输入范围的ADC,采用ADA4841-1放大器驱动,需要将ADC的范围提高到最大。该放大器具有轨到轨输出,对输入有1 V的裕量要求。如果用作单位增益放大器,则至少需要1 V的输入裕量,正电源至少必须是6 V.输出为轨到轨,但仍然只能驱动到地或正供电轨的大约25 mV范围内,因而需要一个负供电轨,以便一直驱动到地。为了给失真性能留有一定的裕量,负供电轨可以是-1 V.

如果允许降低ADC输入范围,从而丧失一定的SNR,则可以消除负电源。例如,如果ADC的输入范围降为0.5 V至5 V,此10%损失将导致SNR降低大约1 dB.然而,这样就可以将负供电轨接地,从而消除用以产生负电源的电路,降低功耗和成本。

3 结语

因此,选择放大器时,务必考虑输入和输出信号范围要求,以便确定所需的电源电压。本例中,额定工作电压为5 V的放大器不能满足要求;但ADA4841-1的额定电压高达12 V,所以使用较高的电源电压将能实现出色的性能,并提供充足的电源裕量。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top