基于FM1182芯片的便携消噪麦克风系统研制
级水平的100 dB 电源抑制比, 极低的THD + N( 0. 015% ) , 230μ A 工作电流。处于关闭模式时, 可将电源电流及偏置电流总和降低至100 nA,并且可以在2. 7~ 3. 6 V的电压范围下工作, 为本产品提供了高信噪比、低能耗、便携的解决方案。IN 引脚是信号输入引脚, 声音通过迷你麦克风转变成微弱的电流, 芯片通过IN 引脚接收。BIAS 引脚为电压补偿引脚, 能确保在多种供电电压下正常驱动麦克风工作, 并降低电压的波动对信号处理的影响。
引脚用来控制控制电路的运行状态, 当将
引脚与VCC 连接时, 电路正常工作; 当将
与GND 连接时, 电路处于关闭状态。此处, 将
接到电源置高电平。OUT 为输出引脚, 经过MAX9812L 放大的信号, 由此接口输出, 供下一级电路处理。此处连接到FM1182 芯片。麦克风前置放大电路如图2 所示。
图2 麦克风前置放大电路
2. 2 消噪运算电路
2. 2. 1 FM1182
芯片电路作为核心电路部分, 运算电路采用美国富迪公司的FM1182 芯片, 该芯片具有低功耗、高效率的特点, 适合本电路的便携型设计的要求。该芯片一共有48 个引脚, 其中真正作用的引脚为44 个。SPK_OU T _N, SPK_OUT _P: 作为扬声器输出接口。EP/ SCL: 接到3. 3 V 的电源处置高电平。XTAL _ IN, XTAL _OU T: 在相同数量的ALU 的条件下, 为了获得更高的性能, 高速DSP 是关键。所以电路采用13 MHz 的晶振。VOL+ : V OL - : 用于调节输出的音量, 这里使用默认值, 故通过1 k Ω的电阻接地。RESET : 用于电路的复位。芯片允许使用内置SAM 微型麦克风阵列技术以提高拾音的方向性。但此电路为了使获得的噪声具有更高的相干性, 且背景噪声等弥散噪声频率幅度变化缓慢, 采用单麦克风输入。故将MIC0_P, MIC0_N 接麦克风。MIC1_P, MIC1_N 接地。LINE_IN: 接收前置麦克风放大电路的信号输入。LINE _OUT : 输出模拟信号。FM1182 芯片电路原理图如图3 所示。
图3 FM1182 芯片电路原理图
2. 2. 2 E2 PROM 芯片24LC02B
电路中使用了24LC02B 芯片来同步时钟信号。当时钟线SCL 为高电平时, 数据线SDA 由高电平跳变为低电平定义为“开始”信号; 当SCL 线为低电平时, SDA线发生低电平到高电平的跳变为“结束”信号。分别接FM1182 的SCL 和SDA 引脚。因为不需要外部片选,所以A0, A1, A 2 三个引脚接地。
2. 3 供电电源
该系统采用3 V 的电压供电, 使用一对7 号的干电池。经测试使用一对南孚聚能环7 号电池, 在默认状态下可以续航20 h 之久。
3 实验数据
在测试过程中, 用播放录制的汽车噪音来模拟汽车噪声现场。采用了一个对照组和一个实验组。对照组只使用MA X9812L 芯片电路, 实验组使用MAX9812L芯片电路和FM1182 电路, 分别将两路信号输入到计算机中, 用WaveCN2. 0. 0. 5 软件将信号捕捉录制下来,以图形的形式展示出来。图4 为无噪声下语音信号。
默认音量下, 对捕捉到的3 条曲线, 分别取同时段的1 s, 近似处理后, 计算曲线面积来分别作为信号功率S1= 11. 2 mW, S2= 20. 4 mW, S 3= 12. 1 W, 图5 中噪声功率N 1 = S 2 - S1 = 9. 2 mW, 图6 中噪声功率为N2 = S3 - S 2= 0. 9 mW。所以未处理前性信噪SN R=10lg ( S1 / N1 ) = 0. 85 dB, 处理之后输出信噪比为SNR= 10lg( S1 / N 2 ) = 10. 9 dB。通过对录制的音频以及波形信号计算分析发现, 当无消噪电路时, 语音信号淹没在汽车噪音之中, 叠加的结果致使接收者只能勉强识别其中一小部分的信息。当使用了消噪系统以后, 大部分的汽车噪声已被削减。语音信号可以轻易被接收者识别。
图4 无噪声下的语音信号
图5 汽车背景噪声下拾取到的语音信号
图6 经过消噪电路或获得的语音信号
4 结 语
该电路实现了高效, 便携, 低耗能的特点。可以广泛的应用于车载免提功能( 例如前装车载免提, 后装市场车载免提) , 手持移动设备( 例如: 智能电话, 个人数字助理) , 个人计算机/ VoIP。该降噪系统亦可用于无线通信的收发端。在对噪声要求越来越高的今天, 低价便携高效的降噪设备将具有越来越大的市场。
FM1182芯片便携消噪麦克风系 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)