无线IPPBX系统的设计与实现
随着以太网宽带技术的发展,以IP网络为媒介的语音通信技术(VOIP技术)凭借其低廉的话费受到消费者的广泛关注。很多企业和科研机构也开始研究、使用这项技术。无线VOIP交换设备(即无线IPPBX)通过GSM无线模块来实现IP网络的电话用户与普通电话用户之间的通信。它融合了以太网和GSM网络,具备GSM网络与以太网络两方面的优势,既具备IP电话话费低廉的优势,又可以通过GSM网络实现IP电话落地而不受固定电话线的束缚,同时结合以太网的http协议可以在其上实现短信网关的功能。本文将从硬件和软件的角度来阐述该设备的设计与实现。
1 系统硬件设计
1.1 硬件结构
系统硬件结构如图1所示,整个硬件系统由GSM工作单元、PCM编解码工作单元、语音压缩/解压处理单元(DSP)、CPLD总线适配单元和MPC860T核心控制单元构成。系统通过两条总线实现硬件系统的协同工作:通过I2C总线向GSM工作单元、PCM编解码单元发送控制信令和读取状态信息;通过HPI总线实现对语音压缩解压处理单元(DSP)语音压缩包的读取和发送。系统通过CPLD以及与之相连的一块MCU实现两条总线的适配并在MPC860T核心控制单元端提供了统一的I/O接口。
系统的工作流程如下:若系统要传送语音数据到以太网,GSM模块或普通话机的模拟话音经PCM编解码器A law/μlaw 编码后送到E1数据总线上,然后DSP将E1线上的PCM码流按G.729/G.723的标准压缩成低比特率的语音包,并在相应的端口产生一定的状态信号,该状态信号经CPLD处理后转化为MPC860T的中断信号,MPC860T处理器响应中断,通过CPLD将语音压缩包从DSP的HPI口读取出来并通过以太网控制器将其发送到以太网上。系统从以太网接收语音压缩包,并将其还原成模拟话音,其过程与此相反。
1.2 GSM工作单元设计
GSM工作单元由MCU、GSM模块以及一些外围接口电路构成,其原理框图如图2所示。MCU是工作单元的控制部件,它通过自身的I2C接口与系统的I2C总线连接,并通过串口与GSM模块连接。单元工作时先从I2C 总线接收系统发送的控制信令,然后由MCU将控制信令转化为具体的AT指令并通过串口发送给GSM模块。GSM模块根据收到的AT指令执行相应的操作(发送拨号信息、建立语音通路、发送短信等)。当然GSM模块也可以将自己的状态信息如自己的忙闲状态、来电号码通过串口发给MCU,再由MCU通过I2C总线上报给主控CPU(MPC860T)。
GSM单元的设计中需要特别注意以下几点:
(1)电源设计。GSM模块在整个系统中属于功耗比较大的部件,空闲时工作电流为35mA,工作时的平均电流为350mA,突发工作电流可以达到2A。所以GSM模块要采用单独的电源芯片供电,并且有足够的负载能力。在设计中采用DC-DC的电源芯片给模块提供4V电压并在电源的输出端并联一个 2200μF的大电容,以防止模块的突发大电流使电源芯片的供电电压发生瞬时下降。
(2)串行接口电路的设计。GSM模块的串行口(UART)使用的不是标准的TTL电平,不能与控制它的MCU串口直接相连,在它们之间要有一个电平转换接口电路。该电路要能实现模块的3V高电平与 MCU端5V TTL高电平的相互转换。设计中使用三极管的开关电路和电阻分压电路就可实现该功能,如图3所示。实验证明该方法简单、有效。
(3)模块语音口电路的设计。GSM模块的语音输入、输出都是差分信号,而PCM编解码器的语音口要求单端信号。在两个语音端口之间要有差分信号与单端信号的转换电路,才可实现两者的连接。设计中采用运放电路来实现差分与单端的转换。由于GSM模块的语音口特别容易受到射频干扰,所以模块的语音口还要连接一些滤波电容。此外,PCB布板也要保证语音信号线远离模块的天线,这样才能将噪声干扰降到最低, 保证话音质量。
1.3 PCM编解码单元设计
PCM编解码单元主要有两个任务:将来自GSM模块或普通话机的模拟话音进行A law/μ law PCM编码,然后发送到系统E1数据线上;获取系统E1数据总线某个时隙的PCM编码并将其还原成模拟话音。设计中采用一块带I2C接口的MCU作为PCM编解码器的控制器。该控制器从I2C总线接收主控CPU(MPC860T)发送的控制信令并将该信令转化为PCM编解码器命令序列,PCM编解码器接受命令后完成相应的编解码功能。
1.4 语音压缩解压单元设计
语音压缩解压单元的工作是:将前端PCM编码器发送来的PCM数据压缩成低比特率的语音包后交由主控CPU处理;将主控CPU发送来的语音压缩包还原成 PCM编码。该单元的设计中采用AudioCodes公司的 AC48304C_C作为语音PCM编码的压缩解压处理器。该处理器支持四个语音处理通道,每个通道可以单独编程,配置
- 基于Zigbee技术家用无线网络的构架(12-14)
- 无线通信领域中的模拟技术发展趋势(蜂窝基站)(09-22)
- 新一代移动通信系统及无线传输关键技术(06-19)
- 无线升级到802.11n 应考虑的因素有哪些?(10-30)
- 基于nRF401 的无线通讯系统及应用(08-10)
- WiMAX带来宽带无线接入技术的变革(05-18)