DS/FH混合扩频接收机解扩及同步技术的FPGA实现
1 混合扩频接收机解扩模块的FPAG设计
解扩模块是混合扩频接收机的核心。该模块实现对接收信号的解扩处理,主要包括数字下变频器、数控振荡器(NCO)、码发生器、相关累加器和伪码移相电路等,通常各模块采用专用芯片。利用FPGA将这些功能集成在一块芯片中,大大缩小了接收机的体积,便于实现系统的小型化和集成化。下面分别介绍该模块各部分的FPGA实现结构。
1.1 数控振荡器(NCO)
数控振荡器是解扩模块中的重要组成部分,主要用于为码发生器提供精确的时钟信号,从而实现对接收信号的捕获和跟踪。码发生器由相位累加器和查找表构成。若使用字长为40位宽的累加器,对于某一频率控制字A,输出频率fout与输入频率控制字A的关系为:
其中,fclk为系统时钟。只要改变控制字A的大小,就可以控制输出频率fout。fout变化的最小步长Δf由累加器的数据宽度决定。若数据宽度取40位,则:
利用上述原理,可以通过精确分频得到所需频率。原理图如图1所示。
图1中频率控制字A由DSP写入。考虑到FPGA内部存储资源限制,取40位相位累加值result[39..0]的高八位作为查找表LUT(look-up table)的输入,查找表由ROM构成,存储各相位所对应采样值。当查找表输入端为某一相位phase时,则输出对应采样值。若输出数据宽度为6位,输出信号格式为余弦信号,则LUT输出为[6]:
若取ROM的并行6位out[5..0]作为输出,则输出信号为每周期采样256点的数字化余弦信号;如果取最高位out[5]作为输出,则输出为系统时钟的分频信号。
1.2 数字下变频器
数字下变频器将A/D采样得到的中频信号进行下变频处理,去除中频,得到基带信号。利用本地NCO产生与输入中频信号频率相同的正弦和余弦信号,并与输入信号进行复乘法运算,然后对运算结果做低通滤波,即可完成对中频信号的下变频操作。正交采样模式下,两路A/D转换器提供正交输入IIN及QIN,数字下变频器的复乘法器输出IOUT、QOUT为:
本振信号、复乘法器、低通滤波器均采用数字化设计。数字下变频器采用ALTERA公司的APEX20K200RC240-1
器件。该器件典型门数为20万,有丰富的逻辑单元和RAM单元,开发平台Quartus II 自带的宏模块,如lpm_mult(乘法器宏模块)、lpm_rom(ROM宏模块)、lpm_add_sub(加法器宏模块)等,给设计带来了极大的方便。数字下变频器原理图如图2所示。
图2中的数字表示相应模块的数据宽度。滤波模块是1个二阶的低通滤波器,滤除混频后的高频分量。在一些专用的数字下变频器件如STEL-2130中,滤波器的阶数是可编程的,可以根据需要设置不同的阶数,从而得到不同的滤波效果。考虑到FPGA的资源问题,设置滤波器的阶数为固定的二阶。滤波器输入x[n]与输出y[n]关系为:
该低通滤波器将相邻的两个输入数据相加后作为输出,即每两个输入数据对应一个输出数据,输入数据时钟节拍为输出数据时钟节拍的2倍。
经过低通滤波后的数据经过滑动窗处理,滑动窗对输入数据进行选择输出,用来动态调整相关峰的大校在捕获过程中观察相关峰值时,通过调整滑动窗口,可以获得不同幅度的相关峰值。选择控制端由DSP写控制字来
技术 FPGA 实现 同步 扩及 混合 扩频 接收机 DS FH 转换器 相关文章:
- 基于Zigbee技术家用无线网络的构架(12-14)
- 无线通信领域中的模拟技术发展趋势(蜂窝基站)(09-22)
- 第四代移动通信系统中的多天线技术(08-05)
- 移动WiMAX 802.16 Wave2的技术特点(02-04)
- Wi-Fi的最新技术进展及未来应用方向(03-16)
- UWB超宽带传输技术及其应用简析(03-18)