校园电子巡更系统设计
摘要:介绍了一种基于GPS的校园电子巡更系统设计。利用GPS卫星数据接收器接收巡更人员所处的位置信息,通过单片机对有效位置信息进行存储和控制,巡更仪主要通过标准串行通信接口RS-232与上位PC机进行数据通信,在特殊情况下也可通过无线收发模块NRF905与控制中心进行数据通信。PC机在Maplnfo软件平台上制作校园电子地图,并通过VB编程控制,在得到巡更仪的数据后能重现巡更人员的巡更轨迹。详细讨论了电子巡更仪的硬件电路设计,包括控制模块、GPS卫星定位模块和无线传输模块等。经实验表明,该系统性能稳定,通信效率高,功耗低,适合于保安巡更管理系统领域。
关键词:ATmegal6L;GPS;巡更
O 引言
随着经济的发展,人们对安全防范的要求也越来越高。安防行业迅速发展,其应用范围也在不断扩大,在智能化楼宇和智能化小区相继热潮之后,又一个新兴的领域一校园的智能安全管理系统的建设在各地也相继掀起了热潮。学校是人口密集区,场地分散、管理人员少,而且学生生性好动、防范意识差。不法分子潜入校园进行盗窃、抢劫、以及校园暴力事件时有发生,而保安在校园安全维护方面起着举足轻重的作用,巡更保安必须尽职尽责,以减少校园犯罪事件的发生,对保安系统的规范化管理则显得意义重大,在这种情况下,校园电子巡更系统应运而生。
校园电子巡更系统应用美国的GPS全球卫星定位系统、GIS系统结合现代通信技术,存储保安的巡更时间、巡更路线的地理数据,能够在控制终端重现巡更轨迹,并能够在遇到突发事件的时候及时向控制中心发出警报信号。
1 总体设计
校园电子巡更系统主要包括两部分:手持巡更仪部分利用GPS卫星定位模块接收GPS卫星数据,通过单片机提取时间、经度、纬度等有用数据并对得到的有用数据进行存储和控制,而且在出现紧急突发事件的时候,巡更人员能够通过无线收发模块向控制终端发送携带巡更人员地理位置数据的警报信息。控制终端部分主要由控制界面和具体的校园电子地图组成,巡更人员需要把每天的巡更数据通过串口传送给上位PC机,以便重现巡更人员的巡更轨迹。系统总体框图如图1。
2 巡更仪电路设计
电路主要包括:Atmegal6L单片机控制电路、GPS接收电路、数据存储电路、无线传输电路、电源管理电路。电路结构如图2。
2.1 核心控制部分
处理核心选用8位低功耗微控制器ATmegal6L,具有片内16 K字节的程序存储器,1 K字节的数据存储器和512字节的E2PROM。它具有32个通用I/O口线、32个通用工作寄存器、实时时钟RTC、1个USART、8通道10位ADC、具有片内振荡器的可编程看门狗定时器、SPI串行端口、与IEEE1149.1规范兼容的JTAG测试接口,此接口同时还可以用于片上调试,以及六种可以通过软件选择的省电模式。其中使用了PD0(RXD)引脚接受Leadtek 9548GPS传送的GPS数据,并对数据进行处理,考虑到单片机内部的flash存储空间较小,可利用ATmegal6L的PA组口进行存储扩展,这里使用的是K9F3208并口数据存储芯片。可以通过两种方式向上位PC机传送数据,一是通过ATmegal6L的串口外接MAX232芯片,辅助外围电路,通过PC机的RS232通用串行接口传输,二是通过ATmegal6L的SPI接口外接NRF905无线收发模块向控制中心传输数据,这种传输功耗较大,只在出现突发情况的时候采用这种传输方式。ATmegal6L模块控制电路如图3。
2.2 GPS定位部分
GPS卫星定位部分由Leadtek 9548GPS核心模块,辅助以外围电路组成。Leadtek 9548GPS模块核心采用美国瑟孚公司设计的SIRFStarIII低耗电量卫星定位接收晶片,有20个通道,能够确保最高的接收灵敏度;内部有可充电电池,可以保存星历数据,便于快速定位;标准的MMCX天线接口,便于连接GPS天线;标准NMEA0183信号输出;工作电压低(3.3~5.0V直流),工作电流小(49 mA),接收灵敏度为-159 dBm;TTL电平数据输出,每秒一次GPS全数据;支持多种串口通讯波特率,标准设定为4800 bpsc。Leadtek9548GPS电路图如图4。
2.3 无线部分
无线传输部分以无线收发模块NRF905为核心。该模块使用433 M开放ISM频段,最高工作速率50 kbps,高效GFSK调制,抗干扰能力强,内置硬件CRC检错,最大发射功率:+33 dBm,模块在以最大功率发射信号时瞬间电流=500 mA,TX Mode:在+33 dBm情况下,平均工作电流小于300 mA;RX Mode:12.5mA。模块在收发模式切换时间1 ms,模块可软件设地址,只有收到本机地址时才会输出数据,可直接接各种单片机使用,软件编程非常方便。放置在开阔地无线通信距离可达2000m,如果配置高增益天线,则通信距离可以达到更远。由于该模块发射功率较大,在不需要发送数据的情况下要切换到接收模式或者睡眠模式。
NRF905利用SPI接口与ATmegal6L进行通信,该模块提供了9×2标准DIP间距接口,方便我们与单片机的连接,接口电路如图5。
- 一种RFID数据压缩算法的研究(01-04)
- 基于IP核的PSTN短消息终端SoC软硬件协同设计(11-25)
- 美国GPS系统的管理与运营(02-07)
- 基于GPS的数据采集系统的研究(01-15)
- 展频技术完美解决GPS搜星灵敏度难题(01-04)
- GPS的信噪比很高,为何定位时间却很长?(05-25)