微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > SiC宽带功率放大器模块设计分析

SiC宽带功率放大器模块设计分析

时间:08-02 来源:互联网 点击:

。采用电容、电阻串联的负反馈方式可以大大增加稳定性,减少噪声损失, 并且可以改善系统增益的平坦度。

图3 CRF24060 电路拓扑

2. 2 功率级设计

  功率级通过3 dB 电桥进行4 路CRF24060 功率合成, 设计的重点是CRF24060 单管放大器输出功率的设计。设计功率放大器完全不同于小信号放大器的设计, 其输出电路首先要满足高的集电极效率和足够的饱和输出功率, 要在输出功率和增益之间合理设计, 将同时满足功率输出和增益要求的输出负载作为功率管的输出阻抗精心设计。由于功率管的增益随频率升高而下降, 且每个倍频程增益下降约6 dB, 因此, 输入匹配电路要采用衰减—— 频率特性具有一定斜率的网络, 使匹配网络在频率降低时产生失配, 而且由失配产生的衰减要近似按每倍频程6 dB的规律增大, 从而抵消功率管增益变化的影响,保证放大器功率增益的平坦性和输出功率的带内起伏小。CRF24060 功率管的电路拓扑如图3 所示。

图3 CRF24060 电路拓扑

  采用微波CAD 软件ADS 对电路拓扑结构进行优化, 主要通过谐波平衡仿真的方法对输出功率和谐波等大信号进行仿真优化。

  2. 3 偏置电路设计

  在射频放大电路的设计中, 容易忽视直流偏置电路的设计。如果直流偏置电路设计不当, 会影响射频放大电路的功率增益和噪声系数, 甚至会导致放大电路的不稳定。通常根据特定电路的需要进行有针对性的偏置电路的设计。在直流偏置电路的设计中, 电路的稳定性是一个非常重要的指标。

  偏置电路影响放大器的频响特性和稳定性, 所以设计时必须仔细考虑。在高频段, 偏置电路对功率放大器的匹配网络有很大影响, 应作为匹配电路的一部分来考虑。在CAD 仿真过程中, 偏置电路一并进行仿真, 达到在工作频段内隔离直流和射频信号的作用, 在不影响匹配的情况下, 滤除功率器件的各种杂散信号。

  在前面设计的匹配电路的基础上, 利用ADS 软件对整个电路进行级联仿真和优化, 小信号增益仿真结果如图4 所示。

图4 增益仿真与测试结果3 模块制作与测试

  基板材料采用CER- 10 板材, 介电常数9. 8, 厚度1. 19 mm。在版图大小和损耗允许的情况下, 基板厚度增加, 可以避免PCB 板弯曲。微带传输线的宽度及离地的距离应严格按照ADS 计算的结果铺设。根据以上方法, 设计制作了宽带功率放大器模块, 制作出电路后, 需要放大器模块进行调试, 反复的调试工作是功率放大器设计完成的保证, 系统仿真并不能替代功率放大器的调试工作。经过调试后, 对宽功率放大器模块主要性能指标进行了测试,常温下测试结果如表2 所示, 增益测试曲线如图4所示。为了满足工程环境要求, 对其做了输出功率高低温试验, 高低温试验结果如表3 所示。

表2 宽带功率放大器测试数据( 常温)

表3 宽带功率放大器输出功率测试( 高低温)

  4 测试结果分析

采用4 只CRF24060 SiC 宽禁带功率器件合成出了100 W 以上功率放大器, 工作范围达到了500~2 000 MHz, 成功实现了多倍频程工作带宽, 体现出SiC 宽禁带功率器件输入、输出特性阻抗较高, 比较容易实现宽带电路匹配, 适合宽频带工作。从图4增益仿真与测试结果对比可以看出存在一定差异,特别是在频率高端, 主要是由于仿真模型的理想化与实际电路存在损耗及加工制作误差等原因所致,但测试结果满足工程需要的各项指标要求, 证明了设计方法的可行性。

  SiC 宽禁带功率器件的工作电压为48 V, 工作时漏极电流较小( 1. 0 A 左右) 。SiC 宽禁带功率器件具有高工作电压、小工作电流的特点。减小工作电流, 在工程中可以减小由于电源供电带来的损耗,提高电源供电效率。

  从高低温试验结果看, 输出功率较常温下有所下降, 高温工作时, SiC 功率器件输出功率随环境温度升高而减小的速度约为- 0. 05 dB/ 10 。可见,应用宽禁带功率器件可以提高功率放大器的环境适应能力, 使放大器可以在高温、温度变化大的环境中工作。

  5 结束语

  利用SiC 宽禁带功率器件结合GaAs 功率器件设计制作了500~ 2 000 MHz 波段宽带功率放大器,满足工程需要的各项指标, 证实了ADS 设计软件能够提高设计效率, 体现出SiC 宽禁带功率器件工作带宽较宽、增益带宽积指标较好、可靠性较高和环境适应能力较强等特点, 可以应用到实际的工程中。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top