OFDM系统中高峰均比的抑制技术分析
摘要:正交频分复用(OFDM)技术作为一种高速信息传输技术,具有频谱利用率高、抗频率选择性衰落和码间干扰能力强等优势,但由于OFDM信号是通过多载波调制后的合成信号,所以OFDM信号存在较高的峰均比,这会给传输系统带来许多不利因素,限制了OFDM技术的应用。文章针对OFDM系统中存在的高峰均比提出了一些相关的抑制技术,提高了系统的可靠性和有效性。在实际应用中,可根据要求和需要选择适合的方法。
关键词:正交频分复用;峰均比;编码技术
1 OFDM系统中峰均比的定义
一个OFDM符号是由多个独立的经过调制的子载波信号相加而成,在某个时刻,若多个子载波以同一个方向进行累加时,就会产生比较高的峰均功率比(Peak-to-Average Power Ratio,PAPR),简称峰均比。对于包含N个子信道的OFDM系统来说,当N个子信号都以相同的相位求和时,所得到的信号的峰值功率就会是平均功率的N倍。如图1所示,在这个例子里,峰均功率是平均功率的16倍,其中所有子载波都受到相同数据符号的调制。
我们定义峰均比为OFDM的峰值功率和其平均功率之比,即:
其中,xn表示在OFDM系统中经过IFFT变换以后得到的输出信号。基带信号的峰均比可以表示为PART=10lgN,当N=256时,PAPR=24dB,当然这只是一个极端情况,OFDM系统内的峰均比通常不会达到这一数值。
我们还用峰值系数(crest factor)来描述信号的峰值变化,该参数定义为最大信号值与方均根值之比:
2 峰均比的性能衡量——CCDF函数
对于包含N个子载波的OFDM系统来说,其中经过IFT计算得到的功率归一化的复基带信号是:
其中,Xk表示第k个子载波上的调制符号。对于OPSK来说,xk∈{1,-1,j,-j}。根据中心极限定理可知,只要子载波个数N足够大,就可以判断x(t)的实部和虚部都将遵循高斯分布,其均值为零,方差为0.5(实部和虚部各占整个信号功率的一半)。因此,可以得知,OFDM符号的幅值r服从瑞利分布,而其功率分布则要服从两个自由度的中心耽分布,其中,均值为零,方差为1,由于自由度为二的中心x2,分布的概率密度函数为ppower(y)=e-y,因此,可以计算得到其累积分布函数(CDF,Cumulative Distribution Function)为:
当然,也可以从另一个角度来衡量OFDM系统的PAPR分布,即计算峰均比超过某一个门限Z的概率,得到互补累计分布函数CCDF:
图2是不同N数条件下,CCDF的理论曲线图。从图中可以看出,在给定PAPR门限值的条件下,N越大,出现高于门限值的概率也越大。
在随后的讨论中,一般都采用CCDF来衡量OFDM系统内的PAPR分布。
3 国内外对OFDM系统峰均比抑制的研究现状
峰均比已成为OFDM技术研究的热点之一,纵观国内外,人们已提出了大量的解决方案,主要分为这两条途径:一是提高功率放大器的性能,二是降低信号的峰均比。为了使高峰均比信号无失真地发射出去,功率放大器需要具有高度的线性和很大的回退(Back-off),但是这样的放大器功率效率很低。直流偏转(Do Bias)方案可以提高放大器的功率效率,而线性化和预失真技术能通过改进放大器的线性而减小放大器造成的非线性失真,以及改进接收端的解码性能,但是,这些技术并不能从根本上解决多载波信号的高PAPR给放大器带来的难题。而降低信号的PAPR可以说是从本质上来解决多载波系统的高PAPR问题,目前,研究者已经提出了许多方案,可以大致归为信号预畸变、编码技术和扰码三类。
预畸变技术是最早采用的方法,由于较大峰值出现的概率非常小,因此,预畸变技术是一种非常直接和有效的降低PAPR的方法,但是它将导致严重的带内干扰和带外噪声,从而降低整个系统的误码性能和频谱效率。编码类技术降PAPR为线性过程,它不会使信号产生畸变,因此没有限幅类技术的缺点,但编码类技术的计算复杂度非常高,编解码都比较麻烦,而且这类技术的信息速率降低很快,因此,只适用于子载波数比较少的情况;扰码技术能有效降低信号的PAPR,其缺点也是计算复杂度太大,但到目前为止,已有很多有效的方法来减少计算的复杂度。因此,在这三类技术中,扰码技术最有希望解决OFDM中的PAPR问题。下面将对这三类技术进行详细的介绍。
3.1 信号预畸变技术
信号预畸变技术是最简单也是最直接的降低OFDM系统中PAPR的方法。在信号被送到放大器之前,首先经过非线性处理,对有较大峰值功率的信号进行预畸变,使其不会超出放大器的动态变化范围,从而避免较大PAPR的出现。最常用的信号预畸变技术包括限幅加窗技术和压缩扩展技术。
3.1.1 限幅技术
限幅技术就是信号在经过非线性部件之前进行限幅,使得峰值信号低于所期望的最大电平值。尽管限幅方法十分简单,但也会给OFDM系统带来相应的一些问题:首先,对OFDM符号的幅度进行畸变,会对系统造成自身的于扰,从而导致系统的误码率性能降低。其次,OFDM信号的非线性畸变会导致带外辐射功率的增加,因为限幅的过程是将OFDM符号乘以一个矩形滤波器,将高于某个幅度的波形削平,因此限幅后的带宽是由两者的带宽共同决定的。为了克服矩形窗函数所造成的带外辐射过大的问题,可以利用其它的非矩形窗函数,例如Gaussian窗、Co-sine窗、Kaiser窗以及Hamming窗等。总的来说,选择窗函数的原则为:频谱特性要好,不能在时域内过长以避免对更多的时域采样信号造成影响。
3.1.2 压扩变换技术
预畸变减小PAPR的压扩变换(C变换)技术的主要思想是:把大功率发射信号进行压缩,而把小功率信号进行放大,从而使发射信号的平均功率相对保持不变,这样不但可以减小系统的PAPR,而且还可以提高系统的抗干扰能力。在发射端对信号进行压扩,而在接收端要实施逆操作,其优点是减小PAPR,增强小功率信号抗干扰的能力。C变换的基本过程如图3所示。
- 基于Zigbee技术家用无线网络的构架(12-14)
- 无线通信领域中的模拟技术发展趋势(蜂窝基站)(09-22)
- 第四代移动通信系统中的多天线技术(08-05)
- 移动WiMAX 802.16 Wave2的技术特点(02-04)
- Wi-Fi的最新技术进展及未来应用方向(03-16)
- UWB超宽带传输技术及其应用简析(03-18)