SAW RFID阅读器的信号处理电路与软件的实现
RFID是一种简单的无线系统,只有两个基本器件,该系统用于控制、检测和跟踪物体。系统由一个询问器(或阅读器)和很多应答器(或标签)组成。RFID技术的基本工作原理并不复杂:标签进入磁场后,接收解读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(Passive Tag,无源标签或被动标签),或者主动发送某一频率的信号(Active Tag,有源标签或主动标签);解读器读取信息并解码后,送至中央信息系统进行有关数据处理。本文将介绍一种SAW RFID阅读器的信号处理电路设计及其软件设计。
1 阅读器的系统分析
阅读器是一款快速、实用、功能超强的桌面端阅读软件。 RSS阅读器是一种软件或是说一个程序,这种软件可以自由读取RSS和Atom两种规范格式的文档,且这种读取RSS和Atom文档的软件有多个版本,由不同的人或公司开发,有着不同的名字。如目前流行的有:RSSReader、FreeDemon、SharpReader等。
阅读器采用模块化设计,最基本单元的为射频电路与信号处理电路。如图1所示,射频系统包括发射电路与接收电路,信号处理电路包括信号处理单元与外围电路。根据功能需求,增加相应的电路,包括有通信电路、显示电路、存储电路、时钟电路等外围电路。
根据项目指标要求,设计的SAW标签可接收40ns的脉冲询问信号,由SAW标签发射极的间距确定每个脉冲回波延迟时间约为115ns.
阅读器工作开始后信号处理电路产生一段脉宽为40ns脉冲控制信号,送给发射电路,经过发射电路一系列调制处理,转换成脉宽是40ns,载频是915MHz的射频询问信号,通过天线发射出去。遇到SAW标签后,标签反射回带有标签信息的射频回波信号,阅读器接收时经过接收电路一系列处理,解调出代表标签信息的回波包络信号,回波包络信号是具有24位,脉宽40ns的脉冲回波,每个回波的延迟时间约为115ns.之后送给信号处理电路进行进一步的识别和处理,完成识别标签的信息。
2 信号处理电路设计
信号处理电路主要负责阅读器的系统控制与信号处理任务。包括:发射时,控制射频开关截取40ns脉冲信号;接收时,数字采集经过射频接收电路解调的回波信号,将回波信号转化为标签编码数据进一步处理。其中回波信号的每个脉冲的脉宽为40ns,每个脉冲信号延迟时间为115ns,带宽则为
接收处理过程就是高速数据采集过程。分析指标要求,信号处理电路设计的关键点如下:
(1)产生高速控制信号控制发射端的射频开关在40ns开与断。
(2)模拟信号到数字信号的转换速度。
(3)经过高速模数转换后,采样速率很快,信号处理器接收数据的速度必须匹配ADC(Analog To DigitalConverter)的转换速度。
对于关键点(1),选择高速处理器,通过软件编程实现40ns响应时间的高速控制信号。
对于关键点(2),模拟信号的最高频率达到
根据奈奎斯特采样定律,采样频率要在64MHz以上,本系统采用采样频率为80MHz的高速ADC.
对于关键点(3),ADC采样速率很高,达到80MHz,处理器无法直接接收处理如此庞大的采样数据。所以需要数据缓冲,这里选用FIFO(First Input First Output)实现数据缓存功能。
2.1 系统结构与器件选择
为了使系统结构简单,我们选用一种高性能的MCU(Micro Controller Unit)作为系统的信号处理核心。如图2所示,信号处理电路由MCU、ADC、FIFO、以及其他外围电路组成。
ADC的选择:接收脉冲的宽度为40ns,带宽为25MHz,根据采样定理,这里选用ADI公司的AD9057,8bit 80MHz,输入输出延迟时间tPD=9.5ns.
FIFO的选择:FIFO接收存储来自ADC高速输出的数字信号,还要将数据输出给MCU,这对FIFO的存取速度由很高的要求,这里选用IDT公司的SUPERSYNC II系列FIFOIDT72V223,最高166MHz操作时钟,容量1024x9 bit,具有可编程性,选用异步模式。
MCU的选择:通过软件编程实现40ns的脉冲控制信号,接收时实现高速的数据采集,RFID系统要求高速工作速度,这里选用性能优秀C8051F131.C8051F是完全集成的混合信号系统级芯片,它的CIP-51内核采用流水线结构,在同频率下是标准8051指令执行速度的12倍,C8051F131最高支持100MHz的时钟频率,处理速度也可达到100MIPS,32个I/0,128K Flash,8448字节内部RAM,可寻址64KB的片上外部RAM.
时钟的选择:ADC与FIFO的工作状态由MCU控制。钟振提供ADC采样时钟与FIFO写时钟,ADC采样时钟与FIFO写时钟只有同步数据才能不丢失,通过查询器件的数据资料,ADC转换速度与FIFO的存取速度可以实现衔接,可共用钟振。FIFO的读时钟与控制由MCU产生。
2.2 硬件电路设计
根据系统结构与器件的数据资料,部分电路设计如下:
(1)AD9057的电路设计:将射频接
软件 实现 电路 信号处理 RFID 阅读 SAW 相关文章:
- 绿色通信的基站体系结构设计(04-18)
- Octasic公布世界首款基于全软件无线电GSM/EDGE无线基站基带解决方案(05-05)
- 各大仿真软件介绍(包括算法,原理)(09-08)
- Microwave Office射频、微波设计软件介绍(05-19)
- Amperes: 三维的静磁设计软件(08-18)
- 基于AWR软件的NFC天线系统设计(01-23)