微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 基于SOPC技术的异步串行通信IP核的设计与实现

基于SOPC技术的异步串行通信IP核的设计与实现

时间:05-30 来源:互联网 点击:


3. 3.1 波特率模块
波特率模块根据PLB总线提供的时钟产生需要的发送时钟和接收时钟。由于UABT在发送数据时只需要按照发送波特率将数据串行地发出就可以了,因此发送时钟就等于发送波特率。而当UART在接收数据时,需要对串行数据进行采样以判断接收数据。由于接收方和发送方的时钟不可能完全同步,所以需要对每一位接收数据持续电平的时间进行分段。分段越多,接收出现误判的概率就越低,但系统开销也越大。在实际的设计中通常采用发送时钟的16倍作为接收时钟。波特率模块的分频功能由两个16位计数器实现,它将PLB总线时钟按配置寄存器的设定进行分频,产生发送时钟和接收时钟。
3.3.2 发送模块
发送模块主要包括发送FIFO和发送单元两部分,如图5(a)所示。发送FIFO数据位宽度为8bit,深度为16字节。发送FIFO缓存MicroBlaze处理器需要发送的数据。当FIFO空间满时,发送模块将状态寄存器中“发送FIFO满”标志位置1,MicroBlaze处理器通过查询该位以判断UART IP核是否可以接收下一个发送数据。

发送单元的设计用有限状态机的方法实现,其状态转换图如图5(b)所示。系统在复位后,发送单元处于空闲状态。当FIFO有发送数据时(Empty管脚为低),发送单元发出读FIFO操作,并进入数据准备状态。当数据从FIFO中读出,发送单元首先发送起始位,进入发送状态。在发送状态下,发送单元依次串行发送8比特数据,并计算当前的奇偶校验码。在数据发送结束后,若配置寄存器中奇偶校验位为1,则发送奇偶校验位。最后发送单元发送停止位,回到空闲状态,完成次数据发送。
3.3.3 接收模块
接收模块由接收FIFO和接收单元两部分组成,如图6(a)所示。接收FIFO数据位宽度为8bit,深度16字节,它负责缓存接收单元收到的数据,并在收到数据后将状态寄存器中“接收数据有效”标志位置1。MicroBlaze处理器通过查询该位来判断是否有数据到达。

接收单元的设计同样采用了有限状态机的方法,其状态转换图如图6(b)所示。系统在复位后接收单元处于就绪状态。当接收单元在接收管脚连续检测到8个低电平时认为起始位有效,进入接收状态。在接收状态下,接收单元每16个接收时钟采集一次接收数据。8个接收数据都采集完成后,接收单元根据配置寄存器中“奇偶校验位”是否为1决定是否进行奇偶校验。若奇偶校验通过,接收单元将接收到的数据写入接收FIFO。若奇偶校验未通过接收FIFO满,接收单元丢弃收到的数据,并在状态寄存器中置“奇偶校验出错”位或“接收FIFO满”位为1。

4 实验验证
4. 1 系统硬件介绍
本文采用Xilinx公司提供的ML505 V5 FPGA Demo板作为SoPC系统硬件平台。ML505 FPGA演示验证板主要由一块Virtex-5 XC5VLX50T FPGA构成,此外还包括RAM、Flash、以太网接口芯片、USB接口芯片以及ADM3202 RS-232电平转换芯片等外围扩展芯片,其中ADM3202电路原理图如图7所示。

实验采用Xilinx公司ISE工具完成UART IP核的逻辑综合和仿真,仿真波形如图8所示,发送数据为0x01。

UART IP核仿真通过后,用EDK工具提供的Peripheral Import Wizard生成一个采用PLB Slave Single模块的自定义IP核框架。在该IP核目录下的user_logic.v文件中例化波特率模块、发送模块、接收模块和寄存器组,并增加相应总线访同逻辑后即生成了本文设计的UART IP核。
用EDK工具中的Base System Builder wizard新建一个如图3所示的SoPC系统,如图9所示。在Port界面下将UART IP核的收发管脚定义为External,并在UCF文件中加入收发管脚的管脚映射描述。在Address界面下生成UART IP核的地址空间,UART通信测试程序将通过该地址空间访问UART IP核。用EDK工具中Hardware菜单下Generate Bit Stream命令生成该SoPC系统的FPGA配置文件。用该配置文件配置ML505板载FPGA后,即生成了SoPC UART通信系统硬件。

用EDK工具中的Xilinx SDK软件开发工具编写相应的UART通信测试程序,编译后将程序下载至MicroBlaze处理器程序空间。将ML505板串口与PC机串口连接后运行UART通信测试程序,在PC机上可以观察到此UART通信系统可以正确的发送和接收UART数据,证明了该UART IP核工作正常。

5 结论
文中详细介绍了一种基于SoPC概念的UART IP核的设计。通过将Xilinx公司提供的PLB Slave Single模块和本文设计的UART逻辑模块结合,快速搭建了一个满足PLB总线接口要求的UART IP核,仿真与综合结果表明该UART IP核各项功能均达到预期要求。该设计方法既采用了成熟的商业IP核,也利用总线接口模块将用户自定义IP核与商业IP核连接成为一个完整的SoPC系统。该方法增加了系统的灵活性、扩展性,同时缩短了系统开发时间,降低了系统开发难度,可为其他嵌入式系统的开发提供有益的参考。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top