基于ZigBee和触摸感应技术的照明控制系统
摘要:传统家庭智能照明控制系统采用有线方式搭建家庭局域网,利用导线传输控制信号,设计时需预埋大量控制线,布线较为繁琐;并且所用控制开关大都采用触点接触式墙壁开关,长久使用触点易磨损,接触不良导致开关可靠性降低。针对以上问题开发了一套基于ZigBee和电容触摸感应技术的照明控制系统。该系统利用ZigBee无线网络代替有线方式搭建家庭局域网,省去了预埋控制线的繁琐布线工作;系统灯控节点内部MCU采用电容式触摸感应焊盘检测手指触压,之后驱动双向可控硅的导通与截止来控制灯光亮灭,从而起到无触点开关控制作用。测试结果表明系统运行稳定,控制可靠,能有效利用ZigBee网络和触摸按键控制家中灯光亮灭。
引言
随着科技的发展,人们对家居环境不断提出新的要求。在追求高效、舒适、便捷的同时更加注重居室环境的智能化。智能照明作为智能化家居的重要组成部分,近年来国内外许多科研人员对其进行了大量研究。如周晓伟 [1-2]、徐勇[3]等提出的智能照明控制系统可以根据周围环境自动调整照明模式或通过PC机终端预设照明模式。李治斌等[4]设计的智能调光开关在传统开关中加入ZigBee模块,实现了通过手机或平板电脑安装客户端软件对灯泡进行调光操作。以上工作均采用ZigBee组网无线通信方式控制,省去了传统有线照明控制系统中繁琐的布线工作,但只能借助PC机或手机等终端设备控制,没有涉及利用开关进行现场控制。
由于传统机械开关存在触点易磨损,使用寿命短,硬件成本高等缺点,而电容式感应按键具有无机械磨损,寿命长,可靠性不会随着时间的增加而降低,硬件成本低,防水防污,易清洁和时尚等优点[5]已在众多领域得到应用。
在此背景下,本文开发了一套不仅可以利用手机等移动设备实现远程控制,而且可以利用触摸按键实现现场控制灯光亮灭的智能家居照明控制系统。
1 系统整体方案设计
本系统主要由系统主机和灯控节点两部分组成,这两部分通过ZigBee网络进行通信。灯控节点取代传统墙壁开关嵌入墙壁86型底盒内,并配有控制灯光的触摸按键。用户可以通过远程控制和现场控制两种方式控制灯光亮灭。远程控制时,用户点击手机APP软件操作界面上的灯泡图标,开关灯命令通过因特网发送到系统主机,系统主机再将该命令通过ZigBee网络转发到灯控节点,灯控节点中的MCU根据接收到的命令驱动双向可控硅导通与截止来控制灯泡接入火线与否,实现灯光亮灭控制。现场控制时,用户触摸灯控节点面板上的不同灯泡图标,灯控节点内MCU检测到手指触压后用同样通过驱动双向可控硅导通与截止来控制灯光亮灭。系统控制原理图如图1所示。
2 灯控节点硬件设计
灯控节点由电源模块、PIC16F1936微控制器模块、ZigBee通信模块、按键模块、灯光控制模块组成。灯控节点硬件结构框图如图2所示。
2.1 电源模块
由于灯泡采用市电供电,而微控制器芯片和ZigBee通信芯片采用直流3.3V供电,故灯控节点直接接入220V市电,市电经MB6S整流后输入FSEZ1317芯片和变压器T2降压得到12V直流电,再由LM1117-3.3及其外围电路稳压滤波到直流3.3V给PIC16F1936和CC2530芯片供电。电源模块原理图如图3所示。
2.2 PIC16F1936微控制器模块
PIC16F1936微控制器是微芯公司生产的8位CMOS闪存单片机,具有体积小、功耗低、抗干扰性好、可靠性高、模拟接口功能强大等特点。片内外设资源丰富,主要包括I/O端口、电容触摸传感模块、A/D转换器、EEPROM、定时器、串口等。灯控节点中他负责处理ZigBee通信模块接收到的数据,从中提取控制命令进行相应操作,同时也进行按键扫描检测,根据检测结果进行相应操作。
2.3 ZigBee通信模块
ZigBee是基于IEEE802.15.4标准的低功耗个域网协议,该协议规定的技术是一种短距离、低功耗的无线通信技术,具有使用方便、价格低廉、工作可靠等特点。ZigBee无线网络器件工作模式包含协调器、全功能模式和简化功能模式三种[6]。协调器是网络的中心节点,负责网络的发起组织、维护和管理,一个网络只有一个协调器,在本系统中它嵌入系统主机内;灯控节点采用全功能模式,既可作为路由节点,也可以作为终端传感器节点;简化功能器件只能作为终端无线传感器节点。
本模块采用CC2530芯片作为ZigBee网络的解决方案。CC2530采用了新一代2.4GHz SoC片上系统,支持IEEE802.15.4标准,其内部集成了一个抗干扰性和灵敏度都较高的RF收发器和一个标准增强型8051微处理器,拥有2个USART、12位的ADC和21个通用GPIO等丰富的外设接口。该芯片只需极少的电阻电容就能搭建完整的ZigBee收发电路,通过串口与单片机通信,使
ZigBee 触摸感应 照明控制 智能家居 201510 相关文章:
- 基于Zigbee技术家用无线网络的构架(12-14)
- 基于精简协议栈的ZigBee网络节点研究(07-17)
- ZigBee无线传感器网络的研究与实验(02-08)
- 解析ZigBee堆栈架构(03-26)
- 组建SMAC协议构架的ZigBee星形网络(06-11)
- ZigBee基本技术问答(12-07)
- 濡ゅ倹岣挎鍥╀焊閸曨垼鏆ョ€规悶鍎抽埢鑲╂暜閸繂鎮嬮柟瀛樺姇閻撹法鎷嬮鐔告畬缂佸顑呴〃婊呮啑閿燂拷
闁稿繈鍔嶉弻鐔告媴瀹ュ拋鍔呭☉鏃傚Т閻ㄧ姵锛愰幋婊呯懇濞戞挻姘ㄩ悡锛勬嫚閸☆厾绀夐柟缁樺姇瀹曞矂鎯嶉弬鍨岛鐎规悶鍎扮紞鏃堟嚄閽樺顫旈柨娑樿嫰婵亪骞冮妸銉﹀渐闂侇偆鍠愰崹姘舵⒐婢舵瓕绀嬪ù鍏坚缚椤懘鎯冮崟顐ゆ濡増鍨垫导鎰矙鐎n亞鐟�...
- 濞戞搩鍘炬鍥╀焊閸曨垼鏆ョ€规悶鍎抽埢鑲╂暜閸繂鎮嬮柟瀛樺姇閻撹法鎷嬮鐔告畬缂佸顑呴〃婊呮啑閿燂拷
缂侇噣绠栭埀顒婃嫹30濠㈣埖宀稿Λ顒備焊閸曨垼鏆ラ柛鈺冾攰椤斿嫮鎷犻崜褉鏌ら柨娑樺缁楁挾鈧鍩栧璺ㄦ嫚閹惧懐绀夐柛鏂烘櫅椤掔喖宕ㄥΟ鐑樺渐闂侇偆鍠曢幓顏堝礆妫颁胶顏卞☉鎿冧簻閹酣寮介悡搴f濡増鍨垫导鎰矙鐎n亞鐟庨柣銊ュ椤╋箑效閿燂拷...
- Agilent ADS 闁轰焦鐟ラ鐔煎春绾拋鍞查悹鍥у⒔閳诲吋绺藉Δ鍕垫
濞戞挻鎸搁宥夊箳閸綆鍤﹂柨娑樿嫰閸欏繘妫冮姀锝庡敼閻熸瑯鏋僁S闁告艾瀚~鎺楀礉閻旇鍘撮柛婊冭嫰娴兼劗绮欑€n亞瀹夐柣銏╃厜缁遍亶宕濋埡鍌氫憾闁烩偓鍔嶅〒鍫曟儗椤撶姵鐣遍柡鍐ㄧ埣濡法鈧冻缂氱槐鐧咲S...
- HFSS閻庢冻缂氱弧鍕春绾拋鍞查悹鍥у⒔閳诲吋绺藉Δ鍕垫
閻犙冨缁讳焦绋夐幘鎰佸晙闁瑰搫鐗愰鎶芥晬鐏炶棄寮块梻鍫涘灱椤斿骞掗崷娆禨S闁汇劌瀚慨娑㈡嚄閽樺瀚查幖瀛樻⒒閺併倝鏁嶇仦钘夌盎闁告柡鏅滈崑宥夊礂閵娾晜妗ㄧ紒顖濆吹缁椽宕烽弶娆惧妳濞戞梻濮电敮澶愬箵椤″锭SS...
- CST鐎甸偊鍠楃亸婵嗩啅閵夈倗绋婇悗骞垮€曢悡璺ㄦ媼椤撶喐娈岀紒瀣儏椤ㄦ粎鎲楅敓锟�
闁哄瀛╁Σ鎴澝虹€b晛鐦滈悹浣筋嚋缁辨繈宕楅妸鈺傛〃閻犱礁寮跺绶維T闁告艾瀚伴妴宥夊礉閻旇鍘撮柛婊冭嫰娴兼劗绮欑€n亞瀹夐柣銏╃厜缁辨繈宕濋埡鍌氫憾闊浂鍋婇埀顒傚枙閸ゆ粎鈧冻闄勭敮澶愬箵椤″T閻犱焦宕橀鍛婃償閺冨倹鏆�...
- 閻忓繐瀚伴。鍫曞春閾忚鏀ㄩ柛鈺冾攰椤斿嫮鎷犻崜褉鏌�
濞戞挸娲g粭鈧Δ鍌浬戦妶濂哥嵁閸愬弶鍕鹃悹褍鍤栫槐婵囨交濞嗗海鏄傞悹鍥у⒔閳诲吋绋夋潪鎵☉闁革负鍔岄惃鐘筹紣閹寸偛螚闁哄牜鍨堕。顐﹀春閻旀灚浜i悘鐐存礃鐎氱敻鎳樺鍓х闁瑰灚鎸风粭鍛村锤濮橆剛鏉介柣銊ュ缁楁挻绋夊顒傚敤缁绢厸鍋�...
- 鐎甸偊鍠楃亸婵堜焊閸曨垼鏆ユ繛鏉戭儔閸f椽骞欏鍕▕闁糕晝顢婇鍕嫚閸撗€鏌ら柛姘墦濞夛拷
閻犳劦鍘洪幏閬嶅触閸儲鑲犻柡鍥ㄦ綑閻ゅ嫰骞嗛悪鍛缂傚啯鍨甸崹搴ㄥΥ娓氣偓椤e墎鎷崣妯哄磿闁靛棔鑳堕妵姘枖閵忕姵鐝ら柕鍡曟娣囧﹪宕i柨瀣埍闁挎稑鏈崹婊呮啺娴e湱澹夐柡宥夘棑缁ㄥ潡鏌呴敓锟�...