微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 将ADC介接到高效能运算放大器

将ADC介接到高效能运算放大器

时间:04-30 来源:DIGITIMES 点击:

能的一个整体性测量。以下的部份将会详细讨论三种不同的ADC驱动器架构。

  1. 单到单ADC驱动器

这个架构有一个单端式输入源接驳到运算放大器的输入,然后此运算放大器的单端式输出会再接驳到ADC的单端式输入。仅仅10 nV/ 的低杂讯和130 MHz的宽阔频宽促使LMH6618成为驱动12位ADC121S101 500KSPS至1MSPS 类比/数码转换器的首选,这个ADC拥有一个具备内置取样和保持电路的逐次逼近架构(successive approximation architecture)。图2所示为一个驱动ADC121S101的LMH6618之原理图,所用的是具备有增益-1(反相)的二阶多重反馈配置。图中的反相配置比起非反相的为佳,原因是反相配置可提供更多的线性输出回应。表1列出LMH6611或LMH6618与ADC121S101组合后的效能资料。图3表示出在f = 200 KHz时的LMH6611和ADC121S101组合之FET绘图。ADC驱动器的500 KHz截止频率可从下列算式计算出来:

运算放大器的增益由下列算式设定:


  图2:单到单ADC驱动器

图3:单到单ADC驱动器的FET绘图

表1:LMH6611/LMH6618与ADC121S101组合后的效能

  2. 单端到差动ADC驱动器

图4中的单端到差动ADC驱动器采用了LMH6612双重运算放大器来缓冲一个单端源,以便驱动一个具备有差动输入的ADC。其中一个运算放大器会被配置成一个单位增益缓冲器,并负责驱动运算放大器U2的反相(IN-)输入和ADC121S625的非反相(IN+)输入。U2把输入讯号倒向并驱动ADC121S625的反相输入。U2的增益配置为+2,因此可在无需牺牲THD效能下减低杂讯。至于2.5V的共模电压会同时设立在两个运算放大器U1和U2的非反相输入。

当0至VREF的单端输入讯号被AC耦合到运算放大器的非反相终端时,以及当每一个运算放大器的非反相终端在中标量2.5V下被偏压时,这种配置便可产生±2.5Vpp的差动输出讯号。此外,两个输出RC抗叠频滤波器会同时使用在U1和U2的输出与ADC121S625的输入之间,以减轻来自输入源的不良高频杂讯之影响。每一个RC滤波器均具备有约22 MHz.的截止频率。图5表示出在f = 20 KHz时LMH6612和ADC121S625组合的FET绘图。

图4:单端到差动ADC驱动器

图5:单端到差动ADC驱动器的FET绘图

表2:LMH6612/LMH6619与ADC121S625两个组合的效能资料

3. 差动到差动ADC驱动器

LMH6619双重运算放大器可以被配置成一个差动到差动的ADC驱动器,以便用来将一个差动源缓冲到一个差动输入ADC,正如图6所示。该差动到差动ADC驱动器可用两个单到单ADC驱动器组成。这些驱动器的每一个输出会接驳到差动ADC的个别输入。在这里每一个单到单ADC驱动器都采用相同的组件,并且配置成增益-1(反相)。

图6:差动到差动ADC驱动器

下表分别总结出LMH6612和LMH6619与ADC121S625和ADC121S705这四个组合的效能。表中同时包括有LMH6612和LMH6619分别在2个不同的频率下连接到两个ADC的资料。为了用尽ADC的整个动态范围,25VPP的最高输入会施加到ADC的输入。图7表示出在f = 20 KHz时LMH6612和ADC121S625组合的FET绘图。

表3:LMH6612和LMH6619分别连接到ADC121S625和ADC121S70后的效能

图7:差动到差动 ADC驱动器的FET绘图

  接地和电路板布局考虑

将输入源接地连接到电源接地是非常重要的。对于上述每一个的ADC驱动器配置,当建立电阻器网络以确保差动输出拥有相同增益时,必须同时考虑讯号源的阻抗。例如,一个音频精确讯号产生器拥有22Ω的源阻抗,而电路板则有一个50Ω的终端,因此设计人员必须调节增益和输入,以便能在运算放大器的输出处获取所需的讯号。

为了获得最佳的高频效能,以下是一些电路板布局的建议:

将ADC和放大器放置得愈接近愈好
  将供电旁路电容器尽量放近装置(距离少于1英寸)
  采用表面黏着而非穿孔式组件,以及采用接地和电源层
  尽量减少布线的长度
  为冗长布线采用终端式传输线

图8:差动到差动ADC驱动器的电路板布局

  LMH6612/LMH6619只消耗仅6.5mA/2.5Ma的电流,相比起市面上大部份的全差动放大器少了超过20mA。采用LMH6611/LMH6612/LMH6618/LMH6619的主要优点是低功率和低成本。当中,LMH6611和LMH6612最适合使用在那些在奈奎斯特(Nyquist)频率20 KHz至2 MHz下运行的应用,而LMH6618和LMH6619则最适合使用在那些在奈奎斯特频率20 KHz至500 MHz下运行的应用。

总括而言,本文涵盖了所有重要的考虑因素,包括外置RL-CL网络的选择以及运算放大器的关键参数:象是THD、设置时间和杂讯,这些都是在把高效能运算放大器连接到ADC时所必须考虑的参数。此外,本文还详细讨论了三种不同的ADC驱动器配置,并且在实

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top