微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 120W高可靠HID灯电子镇流器

120W高可靠HID灯电子镇流器

时间:05-18 来源:互联网 点击:

图4 启动过程的续流二极管电流

HID灯恒功率控制
VT1开通期间,电感辅助绕组感应电压通过电阻R5对电容器C3充电。由于辅助绕组感应电压(Vf)比C3上的电压高得多,所以充电电流约为Vf/R5。电容器上的电压Vx由下式给出:
(3)
当Vx达到控制电压VC时,开通结束,开通时间TON为
Ton=(VxC3R5)/Vf=C3R5NVc/(Vin-Vo) (4)
其中,N为电感主绕组与辅助绕组的变比。
主开关关断时,续流电流经过放大,加在LM556的2端,使它不能立即再开通,避免误动作。续流结束后,触发电路使LM556立即再次开通。开关峰值电流为
Ipk=(Vin-Vo)*Ton/L (5)
输出电流平均值Iav为电感电流峰值的1/2,结合式(4)和(5),有:
Iav=1/2Ipk=C3R5NVc/2L (6)
可见,理想情况下输出电流与控制电压成正比。

降压DC/DC输出平均电流实际上就是灯电流。HID灯的功率为Iav与DC/DC输出电压的乘积,P0=IavVo。根据式(6)可得:电路参数确定以后,单片机只要给出控制电压,就给出了灯电流。因此,单片机不需要采样脉动的灯电流,只要采样DC/DC输出电压(也即灯电压),给出合适的控制电压,就相当于给定了输出功率。而单片机也不需要进行复杂的计算,只要事先制作一张表格,采样了灯电压,就可查表得出对应的控制电压。实验证明这个方法简单有效。在镇流器的生产线上,也可以利用自动测试设备得到每个镇流器的传输特性曲线,生成表格,写入单片机,从而给每个镇流器量身订做一个包含表格的控制程序,对于消除电路离散性十分有效。

谐振升压点火电路
启动过程会影响灯的光效和寿命。根据HID灯的特点,灯管温度低的时候,点火电压大约需要3kV,而在点灯一段时间后,灯管温度比较高,如果需要熄灯后再次点灯,则需要更高的电压才能点火成功。这种情况下如果等待一段时间,比如1分钟,使灯管温度降低一些再点火,就比较容易成功。由于本电路输出比较高的点火电压,所以只需要等待比较短的时间。采取的策略是:每次点火时,单片机试探点火1.6s,如果不成功,则延时20s再点火1.6s,如此反复5次不成功就放弃,认为灯管损坏或者灯管没有安装。需要注意的是,应当避免未装灯的情况下启动镇流器,此时点火电路输出的高压脉冲对点火变压器的绝缘层构成威胁。

图5 点火电路及变压器原边点火脉冲电压波形


图5是与点火相关的电路。点火期间,单片机给出的逆变桥驱动频率为62kHz,远高于正常工作的频率,继电器K1处于断开状态,C3、C4、L1、L2构成谐振环路,在C4上产生约600V的交流高压,经过VD1、VD2、C1、C2倍压整流,产生直流高压击穿VD3(800V放电管)。由于VD3的负阻抗特性,C1、C2中储存的能量会以脉冲的形式释放到点火变压器T1的原边,在副边感应出约8kV的脉冲电压,使得灯管内部击穿电离。一旦点火成功,灯电阻立即下降,谐振条件被破坏,电路不再产生谐振高压。

点火成功后灯电阻下降。由于前端DC/DC电路工作在限流状态,因此点火成功的标志是灯电压比较低(20V)。如果点火成功后立即改为低频(90Hz)工作,由于灯阻抗比较低,容易出现过流的现象。降压DC/DC电路在输出电压接近零的情况下不能很完美地实现恒流的功能。解决的办法是,点火成功后继电器K1并不立即闭合,在此后的100ms里,单片机给出的逆变频率是20kHz,不满足谐振条件,因而不会点火。在此频率下,C3、L2与灯串联,增加了负载阻抗,使得DC/DC电路不至于出现过流。这个阶段可以称为“维持电弧期”。灯电压上升到20V以上之后,逆变频率降低到90Hz,同时继电器K1闭合,进入正常工作状态。这样的控制策略使得启动过程十分平顺,不会出现电流冲击,提高了镇流器的可靠性,同时也有利于延长灯的寿命。

控制程序流程

图6 主程序流程及T0中断服务程序

程序流程如图6所示。程序首先判断是否有开机命令,有则判断输入电压是否高于200V,是就开始点火。点火期间逆变桥输出62kHz激励,主电路谐振,产生高压击穿气体放电管,经过T1给出高压脉冲激励灯管产生电弧。接下来程序控制逆变频率为20kHz,用于维持电弧,等待灯电压上升,然后控制逆变频率为90Hz,进入正常点灯状态。单片机以中断方式给出逆变器驱动信号,即每隔5.5ms中断一次,在中断服务程序中给出逆变器驱动脉冲,执行A/D转换,查表求出当前应该给出的控制电压,输出到DAC。其中,A/D转换程序采用了多次采样求平均的做法,消除偶然的干扰。

HID灯从点火成功到稳定工作需要一段时间。为了快速进入到稳定工作状态,控制程序在点灯最初的90s里将激励功率从额定值提高10%,90s预热结束后返回到额定功率。另外,在逆变桥换流时间内,单片机控

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top