微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 燃料电池车载大功率DC/DC变换器的设计与应用

燃料电池车载大功率DC/DC变换器的设计与应用

时间:07-27 来源:互联网 点击:

3.3 DC/DC变换器低端高端电压电流测量

对DC/DC变换器的高端低端电压电流进行采样,作为控制DC/DC变换器功率的回馈参考数据,并上传CAN网络做为整车控制的重要参考数据。高端和低端的电流采样用传感器WBV151S07,为电压隔离传感器,输入范围为0~75mV,输出为0~5V,供电为±12V。被测母线通过分流,将电流以比例衰减到电流传感器的输入范围内,并通过车用微控制器MC9S12D64的AD采样传感器的输出端。

高端和低端的电压采样用传感器WBV151S01,当被测电压低于500V时,将电压传感器直接挂接到被测母线上,通过控制器AD采样接口读取传感器输出端的值。

3.4温度传感器

车载DC/DC变换器为大功率器件,散热是重要性能指标之一,因此为DC/DC变换器设置了温度传感器,来实时检测温度,当散热器不能满足其散热要求时,根据温度传感器采集的温度量来启动散热风扇,并以温度为依据设定风扇的转速大小。温度检测采用的是美DALLAS半导体公司生产的可组网数字式温度传感器DS18B20。它的测量范围为50℃到125℃,精度可达0.1℃,不需要A/D转换,直接将温度值转换为数字量。DS18B20严格的遵守单线串行通信协议,每一个DS18B20在出厂时都用激光进行调校,并具有唯一的64位序列号。这也是多个DS18B20可以采用一线进行通信的原因。

工作中控制单元对DS18B20的操作以ROM命令和存储器命令形式出现。其中ROM操作指令分别为:读ROM(33H) 、匹配ROM(55H) 、跳过ROM(CCH) 、搜索ROM(F0H)和告警搜索(ECH)命令。暂存器指令分别为:写暂存存储器(4EH)、读暂存存储器(BEH)、复制暂存存储器(48H)、温度转换(44H)和读电源供电方式(B4H)。

4,DC/DC变换器的软件设计

软件设计的开发环境为Code Warrior for S12,它是面向以HC12和S12为CPU的单片机应用开发的软件包。包括集成开发环境IDE、处理器专家库、全芯片仿真、可视化参数显示工具、项目工程管理器、C交叉编译器、汇编器、链接器以及调试器。其调试方式为BDM方式, BDM(Background Debug Mode)是Freescale公司的一种系统调试方式,具备基本的调试功能,包括资源访问及运行控制,与指令挂牌及断点逻辑配合就可以实现很多重要的开发功能。

4.1 DC/DC变换器工作模式

DC/DC变换器设计三种工作模式,使能工作模式,正常工作模式和故障模式。在使能工作模式下DC/DC处于未被启动状况,需要将其引出的两使能脚短路使其使能成功,使能成功后即进入正常工作模式,在正常工作模式下可对DC/DC变换器进行提取功率操作。DC/DC的控制单元如果检测到故障,将使DC/DC变换器进入故障模式,此时整车控制器指令对DC/DC变换器的操作无效。

4.2DC/DC变换器工作协议

作为燃料电池车的电压变换器,需要根据工作方式制定协议,并规定每上传比特位的意义,DC/DC变换器则根据相应的协议向整车CAN网上传数据,整车控制器则从CAN网上采集相应的数据按协议翻译并参与控制策略运算。DC/DC变换器的协议包括上传数据协议和接受数据协议。
4.3流程图

如图9所示,为DC/DC变换器的工作主流程图,此外,在CAN中断处理程序中,按协议接受CAN网数据供主程序使用,并在定时中断中定时上传数据,每100ms上传一帧数据,采用CAN2.0 通讯协议,29位ID,每帧8个字节数据量通讯方式。

5,结束语

本文作者创新点:以飞思卡尔单片机MC9S12D64做为控制单元设计成的燃料电池车载DC/DC变换器经上车实验具有如下创新点:

①DC/DC电路采用没有隔离的双向Zeta-Sepic 直流变换器电路,可靠稳定,适应燃料电池车的工作要求。②采用车用微控制器MC9SD64为DC/DC变换器的控制单元,提高了现场的抗干扰能力,确保DC/DC变换器在电磁环境较为恶劣,电磁干扰因素居多环境下正常运行。③采用数字温度传感器DS18B20检测散热器温度,使温度检测系统结构简单,抗干扰能力强,精度高;④利用CAN总线与整车CAN网通讯,与整车通讯协议匹配,保证通信流畅,提高了DC/DC变换器的通信的抗干扰能力。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top