利用机器视觉防治草莓苗期杂草的研究
(a)原图(b)分割后的图像(c)识别结果(d)喷洒子区域(e)喷洒方法 如图1(a)所示,在原始图像中,杂草植株小,不易发现,人工作业难以清除。图1(a)分割去除土壤后背景变为白色,杂草零星分布于图像中,颜色差异明显,如图1(b)所示。图1(b)二值化后通过形态学开操作得到图1(c),图中清除了杂草对应的像素,剩下黑色部分为草莓在图像中对应的像素。然后将图1(c)分为6行8列共6×8=48个子区域,如图1(d)所示。再根据每个区域有无草莓像素确定是否喷洒除草剂,因此图1(d)得到的喷洒方法如图1(e)所示,其中颜色加深了的子区域为喷洒除草剂的区域,颜色未改变的子区域不喷洒除草剂。 3 实验结果与分析 使用Canon A75数码相机2006年10月22日下午17:30左右在柳州市西鹅乡草莓地采集20幅草莓苗期杂草图像。按本文方法进行图像处理,识别结果和喷洒结果如表1所示。 表1 识别结果和喷洒方法 利用机器视觉防治草莓苗期杂草的研究 如表1所示,按本文方法处理后,可节省50%左右的除草剂,并且基本上没有将除草剂喷洒到草莓上,同时漏喷除草剂的区域也很少,基本上实现了草莓苗期杂草的防治。在有草莓的子区域却喷洒了除草剂的情况中,草莓在区域中面积很少,多是一些叶片边缘,这主要是开操作删除了一些叶片边缘。这类情况的数量较少而且主要是草莓叶片边缘,所以对草莓的危害也不大。在没有草莓而未喷洒除草剂的区域中,主要是杂草植株已经长大,所占面积相对较多,开操作无法将其从图像中清除。显然本方法适用于草莓移栽后,杂草尚未长大的时期,随着杂草的不断生长,本方法的有效性逐渐下降。 显然,图像被分为若干子区域的过程中,子区域的大小直接影响最后的识别结果。子区域过大,容易出现杂草和草莓在同一区域中,从而未喷洒除草剂,影响了除草效果。另一方面,由于开操作对草莓边缘有一些改变,若区域过小,被删除的草莓叶片边缘单独占据子区域的数量增加,这些子区域都被喷洒除草剂,从而影响草莓生长。通过大量实验,对于草莓苗期图像,子区域面积为图像中草莓叶片大小相若时得到的效果较优。 4 结论 针对草莓苗期杂草防治的特点,本文提出利用机器视觉识别出草莓后在不是草莓的区域喷洒除草剂的喷洒策略,并根据这一喷洒策略得到了相应的处理方法。实验结果显示该方法很少将除草剂喷洒到草莓上,同时漏喷除草剂的区域也不多,基本上实现了草莓苗期杂草的防治,并节省了50%左右的除草剂。该方法可应用于类似草莓这样对农药残留要求高的作物的杂草防治中。
- 新一代工业级智能相机选购指南(10-04)
- 自动化行业新焦点,机器视觉引潮流(12-21)
- 机器视觉技术在半导体行业蓬勃发展(12-21)
- 为什么在工业自动化中使用机器视觉(10-09)
- 行业测量技术最佳选择:高精度机器视觉尺寸测(09-18)
- 利用NI机器视觉方案改进您的PLC系统(08-08)