运算放大器:单通道,双通道抑或四通道(上)
通道运放版图。输入级非常靠近裸片中心,因此机械应力梯度最校从一个输出级到另一个输入级的距离要大于另一种版图。从输出级到两个输入级的等温线近似等距的并行线,因此交叉耦合输入级四通道运放的抑制能力很强。这种版图的主要缺点是,输出B必须跨越两个输入级才能到达输出焊盘。从输出金属化到同相输入金属化的任何电容都将导致正反溃这对几年前的单层金属化(SLM)工艺来说问题比较麻烦,不过通过这些运放的低增益带宽已经有所改善。这种版图具有良好的散热性能,但是,在规划同一产品系列中的四通道版本时又会遇到问题。 双通道版图还有另外一种选择,如图4。
在一个产品系列中要规划四通道产品时可以采用这种版图,因为这种版图可以被复制,再经垂直翻转就能快速生成四通道版图。输入和输出相当靠近正确的封装引脚。四通道运放的标准引脚输出如图5所示。
这种版图存在几个微妙的问题:(1)输入级不在裸片中心,而裸片中心是最低的机械应力梯度点,具有最小的失调电压;(2)从输出级到输入级的距离不够远;(3)从一个输出级到另外一个输入级的热波将使等温线变成曲线,因而无法被交叉耦合的输入对完全抑制,并造成从一个通道至另一个通道的串扰。
这些问题使设计师处于两难境地:对双通道运放来说最优的版图对四通道运放而言不是最优的。每个单通道、双通道或四通道运放的单个版图可以从头开始设计,但考虑到上市时间和开发成本,标准设计过程是要尽可能多地重复利用某个设计。当某个产品系列中只需要单通道或双通道运放时,双通道的版图通常是最优的。有趣的是,将图3进行水平翻转可以得到同样的四通道版图,因此与版图设计合理的双通道或单通道运放相比,四通道运放性能指标会较差。
几年前,有个制造商做出了指标非常好的四通道运放。秘诀是使用了一个特殊的引脚框,可接受两个双裸片,即混合器件或多芯片模块(MCM)。这种产品需要在内部完成装配,或与外部装配工厂进行紧密合作。最终的良品率近似等于各个裸片良品率的乘积。例如,如果裸片良品率是99%,那么最终良品率将是0.99×0.99 = 98.01%,这是完全可以接受的。另一方面,如果裸片良品率为90%,对于规格要求很严的器件来说这是很有可能的,那么总的良品率将是0.9×0.9 = 81%。
2009年12月曾有人展开过一项研究,通过五家半导体公司的网站统计单通道、双通道和四通道产品种类的 数量。调研结果如下:
单通道: 598,占 39.7%
双通道: 556,占37%
四通道: 350,占 23.3%
这里包括了大批量应用运放、音频放大器、高速、带有或不带有关断引脚的器件(算作两种)以及单位增益稳定和非完全补偿器件,在精密应用领域,如低失调电压或低噪声,总数会向单通道和双通道倾斜。(未完待续)
参考文献:
[1]Solomon J.The Monolithic Op Amp: A Tutorial Study.IEEE JSSC,1974,SC-9(6)
[2]LT1013 datasheet[R/OL].www.linear.com
[3]http://cache.national.com/ds/LM/LMV774.pdf
[4]http://datasheets.maxim-ic.com/en/ds/MAX4162-MAX4164.pdf
[5]Pease R.What’s all this Common-Centroid stuff, anyhow?[R/OL].http://www.national.com/rap/Story/0,1562,29,00.html
[6]Hastings A.Art of Analog Layout.2nd Ed. Prentice Hall,2005
[7]http://www.analog.com/en/verifiedcircuits/CN0122/vc.html
[8]Pallás A R, Webster J G.Common Mode Rejection Ratio in Differential Amplifiers.IEEE Transactions On Instrumentation and Meausrement,1991,40(4):669-676
[9]http://www.analog.com/static/imported-files/data_sheets/AD8271.pdf
[10]http://www.analog.com/static/imported-files/data_sheets/AD8226.pdf
[11]Wong J.Active Feedback Improves Amplifier Phase Accuracy[R/OL].AN-107 at www.analog.com
[12]Soliman A M.Design of High-Frequency Amplifers.IEEE Circuits and systems,1983
[13]Soliman A M,Ismail M.Active Compensation of Op Amps.IEEE Transactions on Circuits and Systems,1979
ADI 运算放大器 单通道 双通道 四通道 201006 相关文章:
- 如何使低功耗放大器在便携式产品中提高性能(10-03)
- D类放大器原理详解及应用设计指南(三)(03-16)
- ADMC331在全数字化逆变电源中的应用(06-20)
- 雷达天线电源故障检测电路的设计(01-27)
- ADISl6300四自由度IMU在姿态测量中的应用(08-18)
- 高性能模拟器件兼顾医疗设备诊断级精度和便携化需求(04-26)
- 濡ゅ倹岣挎鍥╀焊閸曨垼鏆ョ€规悶鍎抽埢鑲╂暜閸繂鎮嬮柟瀛樺姇閻撹法鎷嬮鐔告畬缂佸顑呴〃婊呮啑閿燂拷
闁稿繈鍔嶉弻鐔告媴瀹ュ拋鍔呭☉鏃傚Т閻ㄧ姵锛愰幋婊呯懇濞戞挻姘ㄩ悡锛勬嫚閸☆厾绀夐柟缁樺姇瀹曞矂鎯嶉弬鍨岛鐎规悶鍎扮紞鏃堟嚄閽樺顫旈柨娑樿嫰婵亪骞冮妸銉﹀渐闂侇偆鍠愰崹姘舵⒐婢舵瓕绀嬪ù鍏坚缚椤懘鎯冮崟顐ゆ濡増鍨垫导鎰矙鐎n亞鐟�...
- 濞戞搩鍘炬鍥╀焊閸曨垼鏆ョ€规悶鍎抽埢鑲╂暜閸繂鎮嬮柟瀛樺姇閻撹法鎷嬮鐔告畬缂佸顑呴〃婊呮啑閿燂拷
缂侇噣绠栭埀顒婃嫹30濠㈣埖宀稿Λ顒備焊閸曨垼鏆ラ柛鈺冾攰椤斿嫮鎷犻崜褉鏌ら柨娑樺缁楁挾鈧鍩栧璺ㄦ嫚閹惧懐绀夐柛鏂烘櫅椤掔喖宕ㄥΟ鐑樺渐闂侇偆鍠曢幓顏堝礆妫颁胶顏卞☉鎿冧簻閹酣寮介悡搴f濡増鍨垫导鎰矙鐎n亞鐟庨柣銊ュ椤╋箑效閿燂拷...
- Agilent ADS 闁轰焦鐟ラ鐔煎春绾拋鍞查悹鍥у⒔閳诲吋绺藉Δ鍕垫
濞戞挻鎸搁宥夊箳閸綆鍤﹂柨娑樿嫰閸欏繘妫冮姀锝庡敼閻熸瑯鏋僁S闁告艾瀚~鎺楀礉閻旇鍘撮柛婊冭嫰娴兼劗绮欑€n亞瀹夐柣銏╃厜缁遍亶宕濋埡鍌氫憾闁烩偓鍔嶅〒鍫曟儗椤撶姵鐣遍柡鍐ㄧ埣濡法鈧冻缂氱槐鐧咲S...
- HFSS閻庢冻缂氱弧鍕春绾拋鍞查悹鍥у⒔閳诲吋绺藉Δ鍕垫
閻犙冨缁讳焦绋夐幘鎰佸晙闁瑰搫鐗愰鎶芥晬鐏炶棄寮块梻鍫涘灱椤斿骞掗崷娆禨S闁汇劌瀚慨娑㈡嚄閽樺瀚查幖瀛樻⒒閺併倝鏁嶇仦钘夌盎闁告柡鏅滈崑宥夊礂閵娾晜妗ㄧ紒顖濆吹缁椽宕烽弶娆惧妳濞戞梻濮电敮澶愬箵椤″锭SS...
- CST鐎甸偊鍠楃亸婵嗩啅閵夈倗绋婇悗骞垮€曢悡璺ㄦ媼椤撶喐娈岀紒瀣儏椤ㄦ粎鎲楅敓锟�
闁哄瀛╁Σ鎴澝虹€b晛鐦滈悹浣筋嚋缁辨繈宕楅妸鈺傛〃閻犱礁寮跺绶維T闁告艾瀚伴妴宥夊礉閻旇鍘撮柛婊冭嫰娴兼劗绮欑€n亞瀹夐柣銏╃厜缁辨繈宕濋埡鍌氫憾闊浂鍋婇埀顒傚枙閸ゆ粎鈧冻闄勭敮澶愬箵椤″T閻犱焦宕橀鍛婃償閺冨倹鏆�...
- 閻忓繐瀚伴。鍫曞春閾忚鏀ㄩ柛鈺冾攰椤斿嫮鎷犻崜褉鏌�
濞戞挸娲g粭鈧Δ鍌浬戦妶濂哥嵁閸愬弶鍕鹃悹褍鍤栫槐婵囨交濞嗗海鏄傞悹鍥у⒔閳诲吋绋夋潪鎵☉闁革负鍔岄惃鐘筹紣閹寸偛螚闁哄牜鍨堕。顐﹀春閻旀灚浜i悘鐐存礃鐎氱敻鎳樺鍓х闁瑰灚鎸风粭鍛村锤濮橆剛鏉介柣銊ュ缁楁挻绋夊顒傚敤缁绢厸鍋�...
- 鐎甸偊鍠楃亸婵堜焊閸曨垼鏆ユ繛鏉戭儔閸f椽骞欏鍕▕闁糕晝顢婇鍕嫚閸撗€鏌ら柛姘墦濞夛拷
閻犳劦鍘洪幏閬嶅触閸儲鑲犻柡鍥ㄦ綑閻ゅ嫰骞嗛悪鍛缂傚啯鍨甸崹搴ㄥΥ娓氣偓椤e墎鎷崣妯哄磿闁靛棔鑳堕妵姘枖閵忕姵鐝ら柕鍡曟娣囧﹪宕i柨瀣埍闁挎稑鏈崹婊呮啺娴e湱澹夐柡宥夘棑缁ㄥ潡鏌呴敓锟�...