微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 机器人触觉传感技术研发的历史现状与趋势

机器人触觉传感技术研发的历史现状与趋势

时间:08-11 来源:互联网 点击:

在触觉的新机遇中当然存在着新挑战. 非传统领域的环境的主要物理特征与结构化环境的特征明显不同. 而在非传统领域中, 不同领域有着不同环境和对触觉的不同要求. 因此触觉技术的发展在现有基础上有不同的侧重点和方向、不同技术要求与市场需求. 对触觉传感器须要有不同的定位. 无疑这些都将促进触觉技术及其商用化的进程.

Lee 和Ncholls 认为医疗尤其是外科手术、康复和服务、农业和食品加工是触觉将起关键作用的机器人扩展领域[ 2, 4 ]. 目前机器人应用于医疗有不少成功实例并正在快速发展. 遥操作机器人用于微创外科手术是机器人应用于医疗中发展最快的, 也是最需要触觉的. 外科医生非常需要恢复在传统微创外科手术中因非直接操作而失去的触觉[ 28 ]. 这种触觉不同于工业自动化中的触觉, 它是人手与人体软组织间的软接触. 如何有效获取这种触觉已有一些研究[ 29 ] , 但还有困难, 需进一步的探索.

5 对未来研发的几点见解(Suggest ion on RD)

根据机器人和传感技术发展趋势, 结合对触觉特殊性和触觉技术研发的历史现状及存在困难的分析思考, 在触觉技术发展机遇与挑战共存的新形势下, 为加快发展, 我们对未来触觉传感技术的研发提出几点见解.

在指导原则上应注意: (1) 根据现有技术基础、应用任务要求、市场需求对传感器进行正确的技术与市场定位. 历史表明不适当的定位会延缓甚至妨碍技术发展. (2) 充分考虑与其它传感技术的互补性. 机器人的各种传感功能之间关系密切, 其作业常需不同功能的传感器. 触觉的某些功能其它感觉也有, 但又各有特点, 因此必需注重它们的互补性. (3)避免过分强调对触觉采用拟人方式. 现有技术基础不能实现机器人对人类感觉的完全模仿, 人的感觉功能并不都完善, 现常用的某些传感功能人却没有,如超声传感等, 而这些人不具备的感知可用于触觉.例如Sh inoda 等基于超声探测研究了用于触觉传感的声谐振伸张气囊(acou st ic resonan t ten so r cell) ,实验表明可获得有用的多维触觉特征[ 30 ].在研发中应注重:

(1) 在新材料、新技术上的集成与多功能化. 与触觉技术相关的基础技术的进步与创新有助于触觉传感器集成与多功化. 文献[ 14, 31 ]的多功能传感器利用了新光刻工艺; 文献[ 15 ]的多维力触觉传感器利用了M EM S 与集成技术.

(2) 对现有技术的挖潜与改造. 目前很少有新的原理发现, 结合新技术对现有技术挖潜改造是一种有效方法. 正是有了新光刻工艺技术, 才能在柔性基底材料上制作出直径3mm 的平面电感线圈[ 31 ] , 这使电涡流传感器可实现平面化、微型化、阵列化并具有柔性, 从而焕发出新的活力.

(3) 多信息融合. 在多功能和多传感器集成触觉系统中可能含接触觉、滑觉、力觉、压觉、接近觉、热觉等不同功能, 而作用对象也具有多种物理特征. 每个传感器的输出一般与几项特征有关, 多个传感器也可能同时含与某一项特征有关的信息. 来自不同传感器的信息也可能相互矛盾. 因此必须构造或选择适当途径和方法进行信息融合. 因信息融合问题本身还未形成基本的理论框架和有效的广义融合模型与算法, 目前的绝大部分工作都是针对特定应用领域的问题展开研究[ 32 ]. 因此对触觉等信息的融合需要针对其特性、特征、任务等来研究.

(4) 未来可能的新功能和特点要求. 传感技术本身的发展将呈现新特点, 如日本高桥清指出的传感器的多功能化、由经典型向量子型转化等[ 33 ]. 现在的传感器尺寸大, 用经典物理可很好的描述. 将来随传感器微型化, 量子效应将起作用. 现在已有了微工厂的概念(m icrofacto ry) , 由此需要用来辨识微加工与装配环境的微触觉传感器[ 34 ].

(5) 利用虚拟现实技术. 根据具体任务性质、要求等, 基于触觉传感原理, 用虚拟现实技术来研究、仿真触觉传感器, 有助于对动态特性的研究且可降低研发成本、缩短时间、提高效率.

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top