微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > MAX262滤波器在多通道声发射监测仪中的应用

MAX262滤波器在多通道声发射监测仪中的应用

时间:12-13 来源:互联网 点击:

通过程序控制C8051F020的P3.0~P3.5口,根据需要,在不同地址单元中存入相应的数据信息。存储器的内容是通过写入由A0~A3选中的地址来更新的,D0和D1为编程参数的输入。存储器地址单元的划分如图2所示。数据在的上升沿时被储存到选中的单元中。由表2可见每个滤波器的工作模式、中心频率、Q值所需编程数据均需要分8次写入MAX262的内部寄存器才能完成设置。

在选择滤波器的工作方式时,方式1和方式2均可实现低通,其中方式1具有最高的带宽,而方式2则可获得较高的Q和较低的输出噪声。将两种方式结合使用,可以在一个时钟频率下选择较宽的中心频率fO覆盖范围。方式3是实现高通滤波器的唯一方式。
当要实现低通3 500 Hz和高通950 Hz组合而成的带通滤波功能时,先对实现低通的滤波器A的时钟频率作出选择,仅使P0.2口输出低电平,从而选择262 kHz的时钟输入,同时通过编程控制将工作模式(01)、中心频率fO(000011)、品质因数Q(0010010)的设置参数通过8次(0~7地址单元)写入到MAX262内部的寄存器中。再对实现高通的滤波器B的时钟频率作出选择,仅使P0.3口输出低电平,从而选择131kHz的时钟输入,同时通过编程控制将工作模式(10)、中心频率fO(011000)、品质因数Q(0110100)的设置参数通过8次(8~15地址单元)写入到MAX262内部的寄存器中。设置完成后,MAX262就按照当前所要求的中心频率和Q值对输入信号进行滤波处理了。其主程序流程如图4所示。

2.2.3 实测结果
在实际测试中,将滤波器A的中心频率设定为3500 Hz,滤波器B的中心频率设定为950 Hz,即级联而成的带通滤波器的中心频率为2225 Hz,通带宽度为2 550 Hz,对由探头传来的声发射信号进行滤波处理后的实测结果如图5所示。

从实测结果的截图中可以看出,该滤波器可以有效地滤除不必要的信号,基本达到设计要求。实际设置的滤波器参数与计算得到的滤波器参数之间存在些差异,但这些误差对滤波特性影响不大,实际测试得到了比较满意的滤波效果。

3 结束语
本系统充分发挥了C8051F020单片机强大的控制能力和数据处理能力,并基于MAX262实现了可程控带通滤波器(高通和低通级联而成)的设计。此滤波电路具有结构简单、外围元件少、频响好、使用灵活的优点。它只需1片MAX262,通过内部滤波器A和B的级联就能很容易完成四阶带通滤波器电路的设计,并且利用两片DS1099时钟产生器,满足了多个截止频率所要求的不同输入时钟。另外,该电路稍加改动后,还可通过对不同参数和N值的设置,来实现全通、低通、高通、带通等滤波器的设计。对于MAX262的时钟输入,还可以有更理想的设计方法,可以考虑直接利用单片机内部的振荡器,经由性能良好的时钟分频器的适当分频后,得到可覆盖更广工作频率范围的多个时钟频率,这样可以更进一步简化电路。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top